

 REAL-WORLD FLASH GAME
DEVELOPMENT
 HOW TO FOLLOW BEST PRACTICES AND
KEEP YOUR SANITY

 CHRIS GRIFFITH

 Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris
San Diego • San Francisco • Singapore • Sydney • Tokyo

 Focal Press is an imprint of Elsevier

 Focal Press is an imprint of Elsevier
 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
 Linacre House, Jordan Hill, Oxford OX2 8DP, UK

 © 2010 Elsevier Inc. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher.

 Permissions may be sought directly from Elsevier’s Science & Technology
Rights Department in Oxford, UK: phone: (� 44) 1865 843830, fax: (� 44)
1865 853333, E-mail: permissions@elsevier.com . You may also complete
your request on-line via the Elsevier homepage (http://elsevier.com), by
selecting “ Support & Contact ” then “ Copyright and Permission ” and then
 “ Obtaining Permissions. ”

 Library of Congress Cataloging-in-Publication Data
 Griffi th , Christopher, 1979-
 Real-world Flash game development : how to follow best practices
and keep your sanity/
 Christopher Griffi th.
 p. cm.
 Includes index.
 ISBN 978-0-240-81178-9 (pbk.: alk. paper) 1. Computer games –
 Programming. 2. Computer animation. 3. Flash (Computer fi le) I. Title.
 QA76.76.C672G774 2009
 794.8’1526 – dc22
 2009020027

 British Library Cataloguing-in-Publication Data
 A catalogue record for this book is available from the British Library.

 ISBN : 978-0-240-81178-9

 For information on all Focal Press publications
visit our website at www.books.elsevier.com

 09 10 11 5 4 3 2 1

 Printed in Canada.
 .

 CONTENTS

Acknowledgments ... x
 Introduction .. xi

 Chapter 1 Computer Science Isn’t for Everyone ... 1
A Little Groundwork ...1

Common Game Types ..1

General Development Terms ...5

Game-Specifi c Development Terms ..8

Flash Development Terms .. 10

You Can Wake Back Up Now ... 12

 Chapter 2 The Best Tool for the Job .. 13
Flash Back ... 13

The Case For Flash ... 14

Nobody’s Perfect... 15

Stop Fighting It ...20

Things Flash Was Built to Do ...21

The Best Tool for the Job ...23

 Chapter 3 A Plan is Worth a Thousand Aspirin ... 25
Step 1. Be Able to Describe the Game from a Bird’s-Eye View in
One or Two Sentences ..25

Step 2. Outline or Wireframe Out the Flow of All of the Game’s
Screens ..26

Step 3. With Your Description and Basic Wireframe in Hand, It’s Time
to Outline the Core Mechanics That Your Game Will Utilize27

Step 4. Build an Asset List ...28

Step 5. Make a List of Technical Requirements for Your Game30

Step 6 (Optional). Diagram Your Classes Using a UML Modeler32

A Quick Review of the Planning Steps..33

iii

iv CONTENTS

 Chapter 4 //FTW! ... 35
Fair Warning ..35

 PART 1: Classes .. 35

Packages ..36

Classes as Files ...36

Constructors ...37

Constants, Variables, and Methods ...37

Getter/Setter Methods ..39

Class Identifi ers ..40

Inheritance and Polymorphism ...41

Interfaces ...42

Linking Classes to Assets in Flash ..45

Class vs. Base Class ...46

Using Exported Symbols with No Class File ..48

getDefi nitionByName and Casting ...48

 PART 2: Events .. 49

dispatchEvent ...49

addEventListener, removeEventListener, and Event Phases50

Event Propagation and Cancellation ...53

Custom Events ..54

 PART 3: Errors ... 55

try, catch, fi nally ..56

Throwing Your Own Errors ..57

 PART 4: Data Structures and Lists ... 58

Objects ..59

Arrays ..60

Vectors ...62

Dictionaries ...62

ByteArrays ...63

So What Should I Use For My Lists? ...63

Custom Data Structures ...64

CONTENTS v

 PART 5: Keep Your Comments to Everyone Else! 64

The Bottom Line ...65

 PART 6: Why Does Flash Do That? ... 65

Event Flow ..66

Frame Scripts ..66

Working with Multiple SWF Files ..69

Garbage Collection ...71

Conclusion ..73

 Chapter 5 Managing Your Assets/Working With Graphics 75
A Few Words About Organization ... 76

Working with Graphics ..77

Raster Formats to Use ..78

Key Points to Remember ...84

 Chapter 6 Make It Move: ActionScript Animation ... 85
A Little Terminology ..86

To Tween or Not to Tween? Is That a Question?..86

A Simple Scripted Shooter ..87

Memory: Tweening Animation ..90

Summary ..95

 Chapter 7 Turn It Up to 11: Working With Audio ... 97
Formats to Use ...97

Export Settings to Use ...98

Using External Files ... 101

Tools for Working with Sounds ..101

Scripting Sounds ...101

 Chapter 8 Put the Video Back in “ Video Game ” ... 115
Video Codecs ...115

External Video Uses: Cutscenes and Menus ...116

vi CONTENTS

The CutsceneManager ..119

Video on the Timeline..123

Setting Up an Internal Video ...125

Summary ...128

 Chapter 9 XML and Dynamic Content ... 129
Bringing Data In: Understanding the URLLoader Class129

XML ..130

E4X ...130

The Crossword Puzzle ...131

Content Is a Two-Way Street: A Crossword Builder148

Sending Data Back Out ...149

One More Example: XML vs. Flash Vars ..149

Summary ...151

 Chapter 10 Four Letter Words: M-A-T-H ... 153
The Math Class ..153

PART 1: Geometry and Trigonometry.. 153

A Quick Explanation of Radians and Pi..158

3D in Flash ...161

The SimpleTunnelShooter Example ..164

PART 2: Physics ... 175

Scalar ..175

Vector..175

The Vector3D Class ..175

Displacement ...176

Velocity ...176

Acceleration ...176

Friction..177

Inertia..177

Simulation vs. Illusion ..177

Reality vs. Expectations ..178

CONTENTS vii

Example: A Top-Down Driving Engine ...178

Example: Top-Down Driving Game with Drift ...184

Review ..186

 Chapter 11 Don’t Hit Me! ... 189
What You Can Do vs. What You Need ...189

hitTestObject—The Most Basic Detection ...189

hitTestPoint—One Step Up ...190

Radius/Distance Testing—Great for Circles ...194

Rect Testing ..195

When All Else Fails, Mix ‘n’ Match ...200

 Chapter 12 I Always Wanted to Be An Architect .. 201
OOP Concepts ..201

Practical OOP in Game Development ..204

The Singleton: A Good Document Pattern ..206

Summary ...208

 Chapter 13 We’ve All Been There .. 209
Basic Encapsulation—Classes and Containers ..210

Store Relevant Values in Variables and Constants210

Don’t Rely on Your Stage ..212

Don’t Use Frameworks or Patterns That You
Don’t Understand or That Don’t Apply ..212

Know When It’s Okay to Phone It in and When It Definitely Isn’t213

Conclusion ...213

 Chapter 14 MixUp — A Simple Engine .. 215
The Main Document ..217

The MixUp Class ...217

The Title Class ..220

The RulesPanel Class ..220

The Game Class ...221

viii CONTENTS

The Interfaces ..224

The GameBoard Class ..226

The SourceImageEmbedded Class ..233

The GameHistory and Results Classes ..234

The SourceImageCamera Class ...236

Review ..238

 Chapter 15 Bringing It All Together: A Platformer .. 239
The Platformer Genre ...239

Data Flow ...240

The Game Flow and Features ...241

The Level File Format and Asset Structure ...244

The Engine Classes ...248

The Game Class ...271

The Asset Classes ..273

Taking It Further ...279

 Chapter 16 Don’t Play By Yourself: Multiplayer Development 281
RTMFP ..281

Stratus ..282

MixUp Multiplayer ..282

Conclusion ...292

 Chapter 17 Squash ‘ Em If You’ve Got ‘ Em: The Bug Hunt 293
Bugs ..293

Performance/Optimization ..298

Summary ...306

 Chapter 18 On Your Guard ... 307
Malicious Use ..307

Data Protection ..309

SWF Protection ..314

Summary ...315

CONTENTS ix

 AFTERWORD .. 317

 APPENDIX A Webcams and Microphones .. A-1

 INDEX ... I-1

 ONLINE CONTENTS
 APPENDIX B Localization ... B-1

 APPENDIX C JSFL is JavaScript For Lovers .. C-1

x

 ACKNOWLEDGMENTS

 This book would never have been possible without the unend-
ing support and love from my wife, Delayna, and my daughter,
Miriam. They are the best family that anyone could ever hope to
have. In addition, I want to thank my extended family members
for always being there for me:

 Mom & Dad
 Meg & Leigha
 Andrew , Caleb, & Carson
 Delilah , Kurt, Vanessa, Isaac, & Virginia
 Daniel & Kelli
 Dottie & Charlie

 I also would have never dreamed of writing a book if not for the
support of my talented colleague and friend, Jason Fincanon.

 For their professional support, I’d like to thank the following
people (in no particular order):

 Josh Dura
 The whole Blockdot crew, especially: Paul Medcalf, Matt
Schmulen, Bo Harris, Andrew Richards, Jim Montgomery,
Curry McKnight, Stephen Hess, Mike Christian, Jon Stefaniak,
Jack Dearnbarger, Dan Ferguson, Jason McMinn, and Mike
Bielinski, Guy Stables, Matt Bugbee, Andrew Langley, Andy
 Brooks, Jack Doyle (and his amazing Tweening platform),
 Alessandro Crugnola, Grant Skinner, Allison Emerson and
Marisa Murphy
 The team at Focal/Elsevier: Laura Lewin, Chris Simpson,
Dawnmarie Simpson, Anais Wheeler

 Finally , I’d like to thank the fi ne team at Adobe who continues
to push the Flash platform further. Please keep up the good work!

xi

 INTRODUCTION

 Game development is a strange hybrid of many skills and styles
merged together. One can argue that games are the most compli-
cated form of entertainment to create. They not only require solid
coding, attractive design, and sound user interface decisions,
but the best games all share one particular aspect — they’re fun
to play. This “ fun factor ” can be especially elusive because it is so
subjective. Different genres of games appeal to different people in
different walks of life. Very few games, if any, are going to appeal
to everyone, everywhere, all the time.

 That said, the most popular type of game for players on the
Internet are what have been termed “ casual ” games. If you’re not
familiar with this phrase, casual games are meant to appeal to a
wide audience and focus on simplicity and approachability over
depth and realism. This is not to say that some casual games are not
deep and realistic, but the audience for a complicated tactical simu-
lation on a console is very different from someone killing 10 minutes
on their lunch break at work. Casual games can fall into any number
of genres, from classic arcade-style games like Pac-Man to puzzle
and logic games like Tetris. In fact, both of the titles I just mentioned
have one thing in common; they are both products of an era in
game development (the late 1970s to mid-1980s) when the focus
was not on spectacle and movie-quality graphics and audio but
rather on creating games that were fi rst and foremost fun to play.

 Games in Flash
 Since you’ve picked up this book, I assume that you’re not just

interested in creating a game, but that you want to build it in Flash.
Flash is an outstanding platform for developing games, particu-
larly casual games for the web. The fi le size and power of the plug-
in, combined with the 98% install base around the world, make it
a smart choice for getting your games seen by the largest possible
audience. Historically, some Flash games have been thought of as
glitchy, lacking in polish, and generally low end. That is quickly
changing, however, as Flash games become more and more sophis-
ticated and get closer to “ traditional ” computer and video games.

 How to Get the Most Out of This Book
 This book further assumes you either have at least intermediate

experience with Flash (CS4 or a previous version) as an animation

xii INTRODUCTION

 or website creation tool or that you’re entering Flash with game
development experience on another platform. The purpose of this
book is not to teach basic usage of the Flash environment from
the ground up, as that has been done many times over by other
skilled authors and instructors. Rather, I hope that by the time you
fi nish reading this book you will feel totally comfortable tackling a
game in Flash CS4.

 The fi rst part of this book covers a lot of the terminology and
basic concepts you will need to understand about game develop-
ment, as well as how to map out a game from start to fi nish on a
single page. In the second part, I cover managing audio and visual
assets in Flash, game logic (including dissecting an entire game
script into its core components), and ways to architect your games
to save you from headaches later. I’ll share some best practices for
both code and library organization.

 A problem in Flash can usually be dissected any number of
ways, and games are no exception. Sometimes external forces
(clients, deadlines, etc.) will dictate one approach over another.
Part three takes what you’ve learned from the fi rst half of the book
and applies it in a number of real-world scenarios, showing that
you don’t have to sacrifi ce the ideals of sound game development
just because your timeline got cut in half.

 The fi nal part of the book wraps up with topics like sharing
resources with a team of developers on larger games and ways
you can optimize Flash to suit your workfl ow, and it provides
some inspiration to get you pointed in the right direction.

 Resources on the Website
 On the companion website to this book, fl ashgamebook.com,

you’ll fi nd a bevy of resources to assist you in following the exam-
ples later in the book and in creating your own original work.
All the source code from the examples I share is available there,
as well as other code snippets, scripts, and helpful utilities that
should speed up game development. The site also provides a way
for readers like you to ask questions and receive updates and
clarifi cations as they become necessary. Be sure to check it out as
you read and after you fi nish the book.

1
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 COMPUTER SCIENCE ISN’T FOR
EVERYONE

 A Little Groundwork
 Before we get too far into Flash, it’s important to lay a founda-

tion for game development so we understand the terminology
that will be used throughout the rest of the book. Refer back to this
chapter when you forget what a term means or how it applies in a
particular situation. If you start to feel a little overwhelmed by all
the long words and abstract concepts, don’t worry! Game develop-
ment (particularly effi cient, well-executed development) is com-
plicated and there’s nothing wrong in admitting it. Remember that
anyone who has programmed a game has suffered the same anxi-
eties and doubt. Like anything in life, it will take practice and real-
world experience to feel profi cient. So grab a cup of your favorite
caffeine-infused beverage, and let’s get started!

 Common Game Types
 There are many different types of games (and some games that

pride themselves on being unable to be easily categorized), but
most can be dropped into one of the following genres.

 Adventure
 Adventure -style games are typically story driven and have one

or more central characters. These games feel the most like movies
(some have been known to have the production budget of one)
and can rely heavily on dialogue, exploration, and logical prob-
lem solving to move the player through the narrative. Adventure
games were especially popular during the late 1980s and early
1990s, with LucasArts and Sierra producing some of the fi nest

 1

2 Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE

 examples of the genre. This game type has had a resurgence of
sorts in Flash due to its very art-driven production pipeline and
the typically lower system requirements.

 Figure 1.1 Mountain Dew Capture the Cube game.

 Action
 This category encompasses a large number of gameplay per-

spectives and subgenres, but usually action games consist of tests
of player dexterity, reaction time, and quick-wittedness under pres-
sure. First-person shooters, side- and vertically scrolling games, and
fi ghting games all fall into the action genre. Flash lends itself very
well to some of the subgenres of this category, particularly retro-
style action games like Space Invaders or Super Mario Brothers.

 Figure 1.2 Raidiux. © 2009 Blockdot, Inc. All rights reserved.

Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE 3

 Puzzle
 Think Tetris, Bejeweled, Sudoku — the list goes on. Games that

involve logic, problem solving, pattern matching, or all of the
above fall into this game type. Flash thrives in this genre for a
couple of reasons. First, there’s generally a lower amount of art
needed for a simple puzzle game, meaning individual developers
can often do it themselves. Second, the core casual gaming audi-
ence on the web tends to be older and to appreciate the generally
slower pace of puzzle games.

 Word Games
 This category could be considered a subgenre of puzzles, but

the approach to building them can be different enough that I
thought they deserved their own space. Word searches, crossword
puzzles, spelling games, and anagrams all belong in this genre.
Flash is a popular medium for games of this type, for the same
reasons it is for other puzzle games.

 Figure 1.3 JinkyPOP. © 2009 Blockdot, Inc. All rights reserved.

 Strategy and Simulation
 I ’m cheating a little by combining these two genres into one,

but they share a number of common traits. Careful planning,
resource management, and decision making, such as city plan-
ning or the creation of a large army, characterize strategy games.
The level of minutiae the player is expected to maintain usually
defi nes a strategy or simulation game. Some games are so com-
plex as to allow every possible option available to the player to be
micro-managed. More casual strategy games, like most created
in Flash, simplify gameplay by reducing the number of options
available and focusing on a couple of main tasks. A popular

4 Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE

 example of the casual strategy subgenre is tower-defense games,
where players must stop enemies from getting past their defenses
using a variety of different weapons strategically placed.

 Figure 1.4 The Maid, Monk, and Ogre. © 2009 Blockdot, Inc. All rights reserved.

 Role-Playing Games
 Role -playing games (RPGs) are similar to adventure games but

are normally defi ned more by the growth of the main character
throughout the course of the game’s story. Traditionally, RPGs
take place in a fantasy setting and center around the player’s
statistical development, such as improving traits like strength,
intelligence, or agility. The most popular recent incarnation of
these games has been in massively multiplayer online RPGs,
or MMORPGs, where players compete against and collaborate
with each other to develop their characters. Because of the social
and web-based aspects, a few Flash MMORPGs have begun to
emerge; however, these games are typically costly and have long
development cycles, making them riskier ventures for companies
and infeasible for individual developers.

 Vehicle Games
 These games are pretty self-explanatory; they revolve around

the operation of a vehicle on land, in water, in the air, or in
space. Traditionally, these games are played from a fi rst- or third-
 person perspective to achieve a sense of realism. Due to system

Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE 5

 requirements and the complexity of building a full three-
 dimensional (3D) environment in Flash, most casual games in
this genre feature a two-dimensional game view.

 Board- and Card-Based Games
 Usually a digital incarnation of a real-world game, this category

can consist of games like Chess, Checkers, Blackjack, and Poker.
Due to the low system requirements, Flash is a great platform for
creating most board and card games, as is evidenced by the large
number of casino-style game sites on the web.

 Figure 1.5 Tiki Freecell. © 2009 Blockdot, Inc. All rights reserved.

 General Development Terms
 Computer science is a diffi cult fi eld of study and defi nitely

not for everyone who simply wants to make games. However, a
fundamental understanding of some of the core concepts of
programming helps later when we’re dissecting a game piece by
piece. Yes, it’s dry and occasionally tedious sounding, but I prom-
ise that fun stuff will follow!

 Pseudo-Code
 Pseudo -code is nothing more than a standard language expla-

nation of a series of programmatic steps, sort of like a summary

6 Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE

 of your logic. Throughout some of the examples in this book,
you’ll fi nd that I sometimes break down the logic in a game in
pseudo-code before typing any actual ActionScript. It is easy to
get too caught up in the syntax of programming and overlook a
fl aw in the logic, so it is almost always simpler to break down a
problem in English before tackling it as actual code. Often my
pseudo-code will become the foundation for the names of my
functions and properties.

 Algorithm
 An algorithm is nothing more than a series of instructions and

decisions that defi ne the solution to a problem. They are not code
or language specifi c and therefore make sense in plain English.
For instance, an algorithm could be as straightforward as the pro-
cess that takes place when a program sorts a list of words by their
length. Here is what that might look like in pseudo-code:

 for all in wordlist
 sort by length
 sort by length (word A, word B)
 if A.length > B.length
 return B
 else
 return A

 Procedural Programming
 Many earlier programming languages, like BASIC or Pascal,

were what are known as procedural languages. You can think
of it in the abstract as programming a list of tasks, or subrou-
tines. They can be executed in any order, but all the commands
are driven by one main logic controller, sometimes referred to
as the main loop . The examples in this book will be a combina-
tion of procedural programming techniques and the next kind,
object-oriented.

 Object-Oriented Programming
 Unlike procedural programming, where the focus is on a set

of tasks to be executed, object-oriented programming (OOP) is
centered around the concept of “ objects ” interacting with each
other. OOP can be a very complicated subject to understand fully,
but suffi ce it to say that each object is a self-contained entity that
has defi ning properties, can send and receive messages from
other objects, and can process its own internal logic. For exam-
ple, in OOP a person would be one object and a friend another.
They will share some components, both being people, but they
will also have characteristics unique to each. They communicate

Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE 7

 to each other through messages in a common language. Some of
the aspects of ActionScript work in an OOP manner, and we will
cover those at length later on in this book.

 Design Patterns
 Much is talked about these days with regard to design patterns

in software engineering. There are many lengthy explanations,
with whole books devoted to the subject in abstract. For the pur-
poses of this book, think of a design pattern as the template for
your code. It is the blueprint by which you can structure a game
as you program it, particularly from an object-oriented approach.
There are many accepted design patterns in the industry, some
of which work well for Flash game development and some that
don’t really have a place here. In Chapter 12, I’ll discuss the most
effective patterns I’ve found when working in Flash and how to
implement them.

 Classes
 In OOP, classes are pieces of code that act as the building blocks

of objects. You can think of them as templates from which all the
objects used in an application are derived. A class defi nes all the
properties and functions (known as methods) of an object. Using
classes in Flash is important for a number of reasons. First of all,
defi ning your code in classes requires you to put more planning
into how you structure your game. This is a good thing; not hav-
ing clearly defi ned blueprints leads to second guessing and dupli-
cation of work later on. If a carpenter went to build a house with
no plans from the architect other than a single drawing, he would
either quit or have to improvise continually along the way. The
result would be a very inconsistent, possibly uninhabitable house.
I’ll cover class structure extensively later on, as most all of our
development will be centered around their use. In the mean time,
here is an example of a simple class defi ning a player in a game:

 package {
 import fl ash.display.MovieClip;
 public class Player extends MovieClip {
 public const jumpHeight:Number = 10; //pixels
 public const speed:Number = 15; //pixels per second

 public var health:Number = 100;//percent
 public var ammo:int = 20;//units

 public function Player() {
 //initialization
 }
 }
 }

8 Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE

 Not all the code may make sense at this point, but hopefully
you can see that we’ve just defi ned a player character with a pre-
defi ned jumping height and movement speed and variables for
how much health and ammo he has. Granted, this little bit of
code alone won’t do anything, but it does create a foundation
upon which to build more functionality and features.

 Public, Protected, Private, and Internal
 The four prefi xes you can give the properties and functions

inside your classes, also known as attributes , defi ne what items
are available from one class to the next. All of them are docu-
mented in Flash’s Help fi les, but here’s a quick summary:

 ● Public methods and variables are accessible from any-
where and are the foundation for how classes interact with
each other; when one class extends another, all public
methods and variables are inherited.

 ● Protected methods and variables are accessible only from
inside their class and are inherited.

 ● Private methods and variables are accessible only from
inside their class and are not inherited.

 ● Internal methods and variables are accessible from all
classes within their package.

 Techie Note

 There is one other attribute, known as static, which can work with any of
the other four listed above. When a method or variable is static, there is
only one copy of that item ever created, and it is accessed through the class
directly, not objects created from the class. In other words, a static property
called version of the class Game would be accessed as Game.version. If
you tried to access it from an instance of the Game class, you would get an
error.

 Game-Specifi c Development Terms
 Now we move onto more interesting development terminol-

ogy. This section covers concepts that we will be directly applying
as we build games in future chapters.

 Artifi cial Intelligence
 Artifi cial intelligence (AI) refers generically to a set of logi-

cal decisions that a program can make to mimic human deci-
sion making. AI can be very simple (like having the computer
move the paddle toward the ball in a game of Pong) or extremely

Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE 9

 complex (like having enemies duck for cover, understand when
they’re in danger, and react accordingly in Halo 2). For our pur-
poses in this book, and because Flash would not be able to
handle it otherwise, most of the AI we develop will be relatively
uncomplicated.

 Game Loop (or Main Loop)
 This term generally refers to the main segment of code that

determines the next course of action for a game based on input,
AI, or some other arbitrary logic. It usually is nothing more than
function calls to other pieces of logic and checking to see if cer-
tain conditions have been met (such as whether or not a player
has won).

 Here is an example of pseudo-code describing a simple main
loop from a game:

 on enter frame
 move player
 move enemies
 check for collisions
 check for win or lose

 In languages like C, a main loop is literally a coded loop
(like a while or for loop) that runs until a condition is met. In
some cases, this is also referred to as the state machine , because
it is the logic that determines which “ state ” the game is in — pre-
game, in-game, post-game, etc. — and performs the correspond-
ing functions. In ActionScript, it must be set up differently
because a regular loop would lock up the Flash player waiting for
the game to fi nish. Because of its animation heritage, Flash works
in the context of frames, much like a movie. It has a frame rate, or
number of frames per second, that can be defi ned. When a frame
passes, Flash updates the screen, making it the perfect time to
perform logic. This can seem odd to developers used to other lan-
guages, but it quickly becomes second nature. I’ll discuss game
loops further later, as they will be the driving force behind our
game code.

 Game View
 A game can take place from any number of views — often the

genre of a game defi nes which view to use, but not necessarily.
Many modern action games are fi rst- or third-person views, in
which you see the game world from your character’s perspec-
tive or from just behind them. More casual action and adventure
games utilize views from the side. Other genres, such as strategy
or racing, may view the action from above. Part of what makes
a game compelling and fun to play is the view you choose to

10 Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE

 employ. An action game with lots of fast movement and obstacles
would be diffi cult and lackluster from a bird’s-eye view, but from
a fi rst-person view it has an immediacy and intensity that sus-
pend the player’s disbelief. Some game views work better in Flash
than others. Most any views involving a 3D environment won’t
work well given Flash’s technological performance limitations,
but there are tricks and techniques I’ll discuss later that can be
used to simulate 3D in a convincing manner.

 Scrolling
 Often a game’s environment extends beyond its viewable area.

For example, in Super Mario Brothers the game world stretches
on for some distance but only a small portion can be seen at a
time. Because of this, the game scrolls back and forth horizon-
tally with the player kept within the main viewable area. This
same affect can be used both horizontally and vertically for driv-
ing games or strategy games, for example.

 One technique to give a scrolling game environment more
depth and more of a 3D look is to have multiple layers of the envi-
ronment scroll at different speeds. This technique is known as
 parallax scrolling . Much like in the real world, objects that appear
to be in the distance, like mountains or buildings, can move at
a slower speed than objects in the foreground. We’ll dissect an
example of side-scrolling animation in Chapter 6.

 Tile-Based Games
 Some game environments can be broken up into a grid, such

as a maze or strategy game. The artwork for the game can then
be created as tiles of a predetermined size. While it requires
more work on the programming end to develop an effi cient tile-
 mapping system, it opens up games to the creation of a level editor
to allow end-users to create custom maps. Starcraft and Warcraft
are two strategy games that feature very well- implemented tile
systems with editors. We’ll look at a tile-based game engine in
Chapter 10.

 Flash Development Terms
 To fi nish out this chapter, here are a handful of terms that I’ll

continue to refer to throughout the book. Understanding the way
each of these items works will be key to architecting sound game
code down the road. In Chapter 4, we’ll dig into these concepts in
even more depth, but this will serve as a quick overview.

Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE 11

 Stage
 In Flash, the Stage is the main content area upon which every-

thing is built. All other visual objects sit on top of the Stage once
they have been added to it. Think of it as your game’s canvas.

 Display Objects
 A display object is any object that has a visual representation

and can be placed onto the Stage. There are many different types
of display objects in Flash; those most familiar to experienced
developers will be Buttons, Sprites, and MovieClips. Even the
Stage itself is a special kind of display object. They all share some
common traits; they all have an x , y , and z position on-screen, as
well as scaling and rotation properties. Flash maintains lists of
all the display objects on-screen at any given time, making them
easy to access and manipulate.

 Events and Listeners
 Events are the primary means of communication between

objects in ActionScript 3. They are simply messages that objects
in Flash can broadcast or dispatch . Any object that has been set
up to listen for them receives events. They can be notifi cations
of user input, information about external data being loaded,
etc. Flash has many built-in events for common tasks, and it is
entirely possible (and encouraged) to create new ones for cus-
tom objects like games. Events can carry with them any amount
of data pertinent to their type, but all of them contain a few basic
properties:

 ● A name or type
 ● A target — the object that dispatched the event
 ● A currentTarget — the object that is currently listening to or

handling the event
 Events are an extremely powerful tool that we will make exten-

sive use of in later chapters.

 Packages
 A package is a collection of classes and functions used for

organization purposes. Because there are so many different
classes built into Flash, not to mention all the classes we will cre-
ate, it is important to keep them grouped into logical collections.
For example, any classes in Flash that deal directly with display
objects are in a package called fl ash.display . Most events are found
in the fl ash.events package. The standard naming convention

12 Chapter 1 COMPUTER SCIENCE ISN’T FOR EVERYONE

 for a package is all lowercase. To use classes in a particular pack-
age, we use the import command to gain access to them:

 package mypackage {
 import fl ash.display.MovieClip;
 public class MyClass() extends MovieClip {
 }
 }

 Author-Time, Compile-Time, and Runtime Events
 These terms refer to the different stages when data in Flash is

altered or verifi ed. Throughout the book I will make reference to
things that happen inside the Flash authoring environment —
 these are author-time events. Events or errors that occur dur-
ing the process in which Flash creates a SWF fi le are known as
 compile-time events. Finally, runtime events occur once a SWF is
running by itself.

 You Can Wake Back Up Now
 Whew . You made it! While you may not fully understand the

concepts I’ve presented here, you will start to see them in context
in later chapters, and they will start to click. Just think, soon you
can drop words like “polymorphism” in casual conversation and
sound like a full-fl edged nerd, er … software engineer!

13
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 THE BEST TOOL FOR THE JOB

 Flash Back
 Adobe Flash (formerly Macromedia, formerly FutureSplash)

has been around for a long time now and come a long way from
its humble beginnings. Starting in Flash 4 developers were given
an impressive (at the time) set of scripting tools for what had
previously been primarily a lightweight animation tool. The fi rst
games started to appear in Flash 4 and continued on into Flash
7 with the introduction of ActionScript 2 (AS2). Flash developers
could now program in a fairly object-oriented way, albeit with
some concessions and quirks.

 Fast forward to the newest release, Flash CS4 (or Flash 10, if you
prefer). Since the previous version, Flash users have had access
to a powerful new version of the language: ActionScript 3 (AS3).
Redesigned from the ground up, AS3 much more closely follows
the standards and guidelines of modern programming languages
(like Java or C#), with a well-defi ned roadmap for new functional-
ity in later versions. Flash CS4 introduces even more amazing new
features to exploit for games, such as basic three-dimensional
(3D) transformations, inverse kinematics (for realistic character
manipulation), and an all-new animation toolset.

 Because Flash CS4 is our development environment of choice,
AS3 is what we will cover in this book. If you’re still making the
transition from AS2 to AS3, or have yet to start, don’t be discour-
aged. Where a programming convention or technique has changed
signifi cantly from AS2, I’ll note it off to the side. AS3 can take some
getting used to, as some of its syntax has changed dramatically
over AS2; however, before long the changes will become second
nature, and you’ll wonder how you ever got along without some
of the best features of AS3. If you’ve already got AS3 development
experience, you’re a step ahead and should feel right at home in
the language. And, if you’re coming from a game development

 2

 Figure 2.1 Flash logos from
previous versions, all the way
back to Flash 5.

14 Chapter 2 THE BEST TOOL FOR THE JOB

 background outside of Flash, you’ll fi nd some things familiar and
some things very different than what you’re used to.

 The Case For Flash
 The fi rst thing to know about Flash is that it was never designed

to develop games. There are a number of absent features that to
this day frustrate even a fan of Flash like myself. I’ll further out-
line these strikes against it shortly, but fi rst let’s see what Flash
has going for itself.

 Player Penetration
 Roughly 98% of users on the Internet have some version of the

Flash player, and usually within a year of a new version being
released more than 80% have upgraded. The sheer size of the audi-
ence accessible to Flash developers is unprecedented in the games
industry. Because it is available on machines running Windows,
Mac OS, or Linux, it also bridges the gaps between all of the major
consumer platforms. Most game designers and developers that
produce big-budget, retail titles have to settle for a much smaller
demographic and have to make the conscious (and often costly)
decision to include platforms other than their main target.

 Flexibility
 Flash is capable of being many things at once. You can create

cartoons, post-production effects, presentations, banner adver-
tisements, all manner of websites, web- and desktop-based appli-
cations, and, of course, games. Developers use Flash for any and
all of these functions, and some may only be familiar with the
one task they’ve learned to do. Because it is a very visual envi-
ronment, Flash is also much more approachable to novices than
most development packages. Unfortunately, this immense fl ex-
ibility comes with a price. By not being designed specifi cally to
do any one thing, Flash tends to take a very generic approach to
its toolset and includes functionality that is useful to a number of
applications, not just one niche. You can create additional tools,
scripts, workfl ows, etc., that will help you in your particular task,
but that is all up to your individual ingenuity. I’ll cover some of
these additions in a later chapter.

 Speed to Market
 Flash makes many tasks that would require a great deal of code

in other languages much easier. Tasks such as simple animation
and basic playback of video and audio are very streamlined in

Chapter 2 THE BEST TOOL FOR THE JOB 15

 Flash, which allows developers to get their products to market
much faster than other solutions with arguably more power. For
example, because of its animator heritage, Flash makes it very
easy to display visuals on the screen. This may sound like an obvi-
ous statement, but compared to other development environments
this is a big advantage. C � � , Java, and other languages render
everything to the screen programmatically, so drawing a simple
rectangle on screen requires many, many lines worth of code. All
it takes in Flash is selecting the rectangle tool and placing one on
the Stage or writing a few lines of ActionScript. Flash takes care of
rendering everything “ under the hood ” so you as the developer
don’t have to worry about it. Well, not too much anyway.

 It Looks Good
 While I’m sure we’ve all seen our share of hideous-looking

Flash content over the years, some of the best-looking and most
visually effective work I’ve ever seen on the web was created in
Flash. Because Adobe is such a design-centric company, they are
equally concerned with tools that allow your work to look nice as
they are with tools that make it run well. This has a tendency to
frustrate both designers and developers from the hardcore end
of the spectrum, but it is exactly this marriage of technology and
design that makes Flash unique.

 Nobody’s Perfect
 For all that Flash has going for it, it is certainly not without its

fl aws when it comes to producing games. Don’t get me wrong; the
point of enumerating these fl aws is so you as the developer will
be aware of them, not to make a case against using Flash in the
fi rst place. The good news is that most of these downsides can be
worked around, with the right tools.

 Flaw: The Code Editor
 While the Flash ActionScript editor has defi nitely evolved with

the rest of the package over the years, it still lacks a handful of
fundamental features that keep me from wholeheartedly recom-
mending it as the coding tool of choice. The most aggravating
omission is actually just a poor implementation: code hinting. As
you write code, Flash tries to anticipate what you’re going to want
to type next and offers you a selectable list of options to try to
speed up the process. The problem is that it only hints code when
you get to the end of a word, so if you start to misspell a variable
or function and don’t receive a hint for it, you have no indicator of
where you went wrong. It also won’t give you hints for any classes

16 Chapter 2 THE BEST TOOL FOR THE JOB

 that aren’t part of Flash’s core library, which as you will see later,
is a large portion of what we’ll be using.

 Figure 2.2 The built-in ActionScript editor in Flash CS4.

 Solution: Use an Additional Tool
 The simplest solution to this quandary (and the one I use) is to

use an additional application to handle all your ActionScript writ-
ing and use Flash for everything else. The two best options out
there as of this writing are FlashDevelop, a free open-source code
editor, and Flex Builder, Adobe’s coding application based on
Eclipse (another open-source editor). If you’re on a tight budget

 Figure 2.3 The free code editor FlashDevelop.

Chapter 2 THE BEST TOOL FOR THE JOB 17

 or you don’t intend to use the Flex framework to create Flash
content, FlashDevelop is a great choice and what I use on a daily
basis. If you want to create content in Flex, or you already own
a copy of Flex Builder, it is an equally robust solution with some
really great additional features such as bookmarking lines of code
that you’re actively working on. The extra step of switching back
to CS4 to publish your SWF will pale in comparison to the amaz-
ingly good code hinting and other scripting enhancements these
programs offer.

 Flaw: Performance/Memory Management
 As Flash games continue to grow in size and complexity, they

require heftier hardware to run well. Most other modern devel-
opment environments include tools for benchmarking a game’s
consumption of system resources like CPU power and memory.
Flash does not have any features like this, so it is harder to pre-
dict without real-world testing how well a game will perform on a
range of systems or what its minimum requirements should be.

 Solution: Use a Third-Party Solution or Roll Your Own
 The Task Manager in Windows and the Activity Monitor on

a Mac are great system-level tools that everyone has for moni-
toring the memory and CPU allocation of a given application.
Unfortunately, there’s no real way of getting the exact CPU usage
of a Flash game, because most ways of testing it involve run-
ning it inside another program, like Flash CS4 or a web browser.
These programs can be running other tasks that consume sys-
tem resources and it’s hard to know where the container ends
and the game begins. That said, sometimes a simpler approach
to this problem is more effective. Flash content is set to run at a
predefi ned frame rate. If the Flash Player gets too bogged down
with either code or whatever it’s trying to render to the screen,
it will bring the frame rate down. It is very easy to use a small
component in your games to monitor the frame rate a particu-
lar machine is getting. You can then use this information during
testing to determine the minimum level of machine required
to play your game. Simply set a tolerance level (usually 85% or
higher of a game’s designed frame rate is acceptable) and then
note which machines fall below this tolerance. Memory is a little
more exposed in Flash, and there are ways of determining choke
points in your game where memory usage gets out of hand,
though it does require writing your own utility. This is done using
the Sampler package, and we will cover it, the FrameRate compo-
nent, and other optimizations in Chapter 17.

18 Chapter 2 THE BEST TOOL FOR THE JOB

 Figure 2.4 The Activity Monitor on a Mac.

 Flaw: Debugging Content
 Adobe greatly improved the debugger from AS2 to AS3, but it

still has a number of fl aws when it comes to working with larger
projects. First of all, because SWFs do not store any breakpoint
information by default, you can only step through code in the
active SWF. Any subsequently loaded SWFs into your container
cannot be debugged. As projects get larger and larger and rely on
external fi les, this becomes exponentially more cumbersome. This
problem also affects remote debugging, which is often even more
important than when inside Flash. I’ve had content work fi ne
within Flash and fall apart once it is on a web server, the results
of which are a bug hunt in the dark and a lot of head scratching.
Needless to say, this becomes even more frustrating with games,
which rely so heavily on lots and lots of code.

 Solution: Use Traces and Custom Tools
 The single most helpful tool in debugging Flash content is

the trace command; it has been around since Flash 4 and works
essentially the same way it did those many years ago. All it
does is display whatever information you tell it to at runtime.

Chapter 2 THE BEST TOOL FOR THE JOB 19

 This becomes invaluable when attempting to watch something
as complicated as a game execute in real time. You can have
Flash trace out entire sequences of logic to determine where a
bug is occurring, and you can use it to display messages to other
developers who might be working with your code. Although
traces work through the Output window in Flash, it is possible to
capture them inside Firefox using an extension called FlashTracer
and the debug version of the Flash Player. Links to both can be
found on this book’s website, fl ashgamebook.com. It works
well for general debugging, but when a game works fi ne in Firefox
but not other web browsers it won’t be of any help. Another
option is to create even more robust tools you can use in any
environment. We’ll explore how to create and implement these
tools in Chapter 17.

 Figure 2.5 The FlashTracer extension running inside Firefox 3.

 Flaw: Lack of Built-In Game Libraries
 Up until this point, the shortcomings of Flash I’ve outlined are

ones that affect developers of all kinds of Flash content. Because
games tend to need more specifi c toolsets and lean towards the end
of customized development, Flash lacks a number of code libraries
that are readily available on other platforms. Examples of this type
of library could be a physics simulator for doing realistic physical
collisions or a sound manager that easily handles fading/panning
sound effects in real time. These libraries must be written from
scratch, which means they do not benefi t from the speed boost of
being implemented directly inside of Flash.

20 Chapter 2 THE BEST TOOL FOR THE JOB

 Solution: Write Your Own or Find Open-Source
Implementations

 Unfortunately , until Adobe adds game-specifi c libraries to the
Flash Player we are stuck building our own. Luckily, many devel-
opers in the Flash community are working to either port libraries
such as these from other languages or write them from the ground
up in ActionScript. Many of them are open-source projects that
anyone can contribute to and improve. There are links to a num-
ber of these on this book’s website. To be fair to Adobe, some new
classes have been created for Flash 10 that have previously had
to be written from scratch, such as 3D manipulation of display
objects, an inverse kinematics engine, and a new data type for
dealing with vectors (see Chapter 10 on math and physics).

 Stop Fighting It
 Traditional game developers sometimes try to fi ght Flash’s nature

when they fi rst make the transition, but often the best way to get
the desired result out of Flash is to play to its strengths. Take, for
example, a character in a game you want to animate depending
on its state (idle, running, jumping, etc.). An artist has given you
image sequences of each of these states. The character’s state may
be controlled by user input with the mouse or keyboard, or by AI.
A conventional approach to this problem would be to write a script
that updates the character with the correct frame of animation
based on what the game is telling it to do. However, this requires the
script to know how many animations there are, how many frames
each animation is, and whether the animations loop or only play
once. It also has to add the new image to the Stage and remove the
old one. In addition, it adds overhead to any other code running in
the game, which can become troublesome if you have many char-
acters on-screen at once.

 This is a perfect example of an area where Flash shines over
other game development tools. Because the environment is
built around the concept of timelines and animation, you have
a tremendous amount of fl exibility when it comes to controlling
player states, game states, or any other objects in your game that
are more than a still image. The trick is in knowing what Flash
does best and where you need to alter its behavior.

 The fl ip side of the game development coin is that games do
take code — often lots of it. A game built entirely around anima-
tion and fancy art would not likely be very interesting or reusable
at a later date. Users who have previously built content in Flash
with very little scripting may fi nd themselves panicking at the
sight of the amount of code we will encounter in later chapters.

Chapter 2 THE BEST TOOL FOR THE JOB 21

 This is normal; take a deep breath. Development in Flash has
always been a marriage of different disciplines, and games are
possibly the ultimate example of this notion. Each task Flash has
been designed to make easier has aspects that translate to game
development.

 Things Flash Was Built to Do
 Animation vs. Games

 Possibly Flash’s strongest use out of the box is as an animation
application. Much like post-production programs (like Adobe
After Effects) or multimedia authoring tools (like Adobe Director),
Flash is centered around the concept of a timeline. By default,
events occur in a linear order, and objects on the timeline can
have timelines nested within them. This allows for very complex
animations to be built relatively quickly.

 Consider for a moment an animation of a character walking.
In order to look convincing, all the character’s appendages would
have to be separated and animated independently. Additionally,
they must move across the Stage so the character is not just walk-
ing in place. To move all the parts at the right speed would be very
cumbersome and time consuming. Instead, with nested time-
lines, the walking sequence can be contained inside a clip that is
moved at a different rate across the Stage. While this concept is
not at all new to anyone familiar with Flash, it speaks to a hierar-
chy that will prove very handy later.

 Application vs. Games
 Though it started as an animation tool, Flash has grown into a

number of other uses. Since the last few versions of Flash, Adobe
has started marketing it (along with Adobe Flex) to create what
is referred to as rich Internet applications (RIAs). In brief, RIAs
are applications that perform what were traditionally desktop-
bound tasks from the web. They can be anything from shopping
cart applications to billing software to a weather forecast widget.
To provide fl exibility and to make rapid development of this kind
of software possible, Adobe includes a number of components —
 prebuilt pieces of code designed for easy reuse. These compo-
nents include scrollbars, text boxes, radio buttons — devices you
might see on a typical webpage in HTML. While these compo-
nents are great for RIAs, they serve little use directly in games
(though I will show later how they can be very useful in tools that
aid game development).

 Arguably , a game is an application, since it performs certain
functions based on user input. However, an application in the

22 Chapter 2 THE BEST TOOL FOR THE JOB

 traditional sense is used to create something or deliver informa-
tion; it receives input and gives output. The guidelines for pro-
ducing an application like a word processor are very different
from those used to create a game. This must be understood so as
not to try to develop games like you would any number of other
applications. While applications tend to be used for productivity,
games are used for entertainment or, in some cases, education.
Games are experiential; they set a tone and create an environ-
ment for the user to have fun (or occasionally teach a concept or
make a point).

 Flash vs. Flex
 Adobe Flex is a tool for creating Flash content outside the CS4

environment, based on a preset framework of components and
a layout language similar to HTML. It excels for rapidly creating
RIAs. It was conceived to try to win over developers to Flash from
platforms like Java or .NET. Where Flash CS4 stands out in terms
of animation and motion graphics capabilities, Flex shines as a
programmer tool. Its accompanying Flex Builder is an outstand-
ing code editor and has many features that make traditional pro-
grammers feel right at home, as it is based on the popular Eclipse
integrated development environment (IDE). The main reason
I chose to cover Flash instead of Flex as my development envi-
ronment of choice is that I feel Flash is simply a better environ-
ment for making most games. There is no equivalent to be found
in Flex for Flash’s animation toolset, but Flash can be augmented
and used concurrently with other tools like Flex to make up for
its code shortcomings. The other reason to use Flex is the Flex
Framework (a set of classes for easily creating and skinning RIAs
using a markup language called MXML), and it adds considerable
bulk to your projects that in no way benefi ts game development.
See above regarding alternative code editors for Flash.

 Websites vs. Games
 Another area where Flash has fl ourished is in website develop-

ment. I started using it at an ad agency, building branded web-
sites for clients. Flash includes many features for working on
the web, including streaming support for content, the ability to
load data from a variety of external sources, and, of course, its
browser-based player that places Flash content alongside any-
thing else in HTML. Much like games, websites tend to be expe-
riential, but they are also usually meant to be informative. When
they are intended purely for entertainment they can resemble a
game on many levels, short of a score or accomplishment-based
outcome. In fact, because of the similarities in how each type of

Chapter 2 THE BEST TOOL FOR THE JOB 23

 content is produced, the line between Flash websites and games
nested inside them has become very blurred.

 Flash vs. Traditional Game Development
 Working with game developers coming from a background

in C or Java, for example, has been an enlightening experience;
many aspects of Flash’s workfl ow that I take for granted are real
stumbling blocks to outsiders. First of all, traditional game devel-
opers tend to keep all the code for a game and all the assets (art,
sounds, video, etc.) separated completely. The code defi nes what
assets are loaded and how they are used. In Flash, the standard
way of managing assets is to import them into a single library fi le.
To use an asset, you simply drag it onto the Stage and start work-
ing with it, or you give it a name that can be referenced later in
the code. This interdependence of code and assets has often been
a criticism leveled against Flash by more traditionalist develop-
ers, as too heavily tying code to specifi c assets can render it hard
to reuse later. While there is some truth to this claim, there are
ways (which we will cover later) to utilize the conveniences of
Flash’s asset management with largely reusable code.

 The Best Tool for the Job
 Perhaps one of Flash’s greatest strengths is the fact that there

are arguably so many ways to achieve the same end goal. There
are defi nitely better and worse processes along the way, and in
the chapters to come I will outline what I’ve found works consis-
tently and what to avoid.

This page intentionally left blank

25
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 A PLAN IS WORTH A THOUSAND
ASPIRIN

 I ’ve built a lot of games in Flash over the years. Some have
taken less than a week, and some have stretched on for several
months. Whether they had huge budgets or practically no budget
at all, one common thread has come back over and over again:
The projects that were well planned out and clearly defi ned went
smoothly, and those that were not didn’t. Planning a game thor-
oughly can feel like a tedious step, but it’s much easier to change
your mind or predict problems on paper than it is in the heat of
development. How exactly you go about documenting and out-
lining your game is a matter of personal preference and a mea-
sure of just how anal retentive you’re willing to be. Here are some
strategies that work for me.

 Step 1. Be Able to Describe the Game from a
Bird’s-Eye View in One or Two Sentences

 Most any game idea, no matter how complex, can be summed
up in this manner, even if it leaves out a lot of details. Being able
to distill a game down to its most basic premise keeps you on
track and acts as a “ bigger picture ” reminder of what you’re build-
ing. If you work at a company building games for clients, you’re
likely dealing with marketing people, not gamers; they tend to
appreciate this level of succinctness. For example, a summary of
Pac-Man could be:

 Move through a maze collecting food while avoiding ghosts
that are trying to kill you.

 A game I once built for Mountain Dew’s MDX drink would have
a description like this:

 3

26 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

 Drive a cab around the city at night and earn as much money
as possible by delivering passengers to their destination in a
timely manner. Pick up bottles of MDX for a speed boost.

 Note the plug at the end outlining how the client’s product will
be showcased; that is very intentional.

 Step 2. Outline or Wireframe Out the Flow of
All of the Game’s Screens

 At its most basic, this includes the main menu, help panels, the
core gameplay itself, and any results screens (client link, score-
boards, etc.). Note that this is not an outline of gameplay, but
rather all the steps leading up to and surrounding it. Performing
this step captures the user’s progression through the game and
helps identify touch-points between different screens that might
be tricky to integrate if you don’t plan for them in advance.
Figure 3.1 is an example of how a simple game with relatively few
screens might look. In this example, bolded text represents but-
tons or links that can be clicked to access the associated screen.
A simple wireframe like this is also often helpful to artists,
reminding them of any necessary buttons, call-outs, etc.

 Figure 3.1 A very simple game fl ow, with a box representing each screen.

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 27

 You might have noticed () around the Quit button. This indi-
cates that a Quit button is optional. It makes sense for games
that players will download to their computers, but for web games
in a browser it doesn’t really have a place. If you add the option
to Quit from your game in a webpage, be sure you know where
you’re going to send them.

 Step 3. With Your Description and Basic
Wireframe in Hand, It’s Time to Outline the
Core Mechanics That Your Game Will Utilize

 This is more or less a feature list and can simply be in bul-
leted form, but the more detail you cover the less surprises you’ll
run into once you’re in production. It allows you to break down
the gameplay into its main pieces of functionality. These include
components like the game’s rules, input mechanisms (keyboard
or mouse), movement and collision, and how the player’s score or
progress is determined and recorded. Once again referring back to
Pac-Man as an example, here’s how a mechanics list might read:

 ● Maze tile engine
 � Nothing can move through walls.
 � Any open space is fi lled with food, power-ups, or

bonus items (fruit).
 � One pass-through connects left and right sides.
 � Each tile has at least one and up to four possible con-

nections to other tiles.
 ● Collision management

 � Maze
 � Ghosts
 � Pick-ups

 ● Player
 � Keyboard input; directional arrows
 � Lives

 ♣ Player has three lives at start of game.
 ♣ Player loses a life every time he is hit by a ghost

without a power-up.
 ♣ When the player dies, his progress in the current

level is maintained.
 ● AI

 � Normal behavior — chases player.
 � Power-up behavior — avoids player.
 � Starts from a central location at the beginning of

a level and is sent back there when caught by the
player in power-up mode.

 � Increased speed with each successive level.

28 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

 ● Pick-ups
 � No pick-ups regenerate until the start of a new level

or a new game.
 � Food

 ♣ All food pick-ups must be collected to win a level.
 ♣ Food contributes 10 points per item to the player’s

score.
 � Power-ups

 ♣ Each level of a game has four power-ups.
 ♣ Eating a power-up makes player invincible for fi ve

seconds and allows player to eat ghosts.
 � Bonus food items

 ♣ Appear on a random interval, one at a time, and only
stay in place for a few seconds before disappearing.

 ♣ Contributes 100 points per item to the player’s score.
 ● Scoring

 � Pick-ups and eating ghosts contribute to overall score.
 � Final score is used as ranking mechanism for

scoreboards.
 ● Winning criteria

 � Player wins a level when he picks up all food.
 � Game continues until player runs out of lives, getting

successively harder with each level (see AI).
 As you can see, all the familiar features of Pac-Man have been

outlined here, as well as their relationships to each other. Note
that this list is not typically client facing, but in projects with a
short timeline it can be wise to put it in front of a client to get sign-
off before you begin production. This can give you leverage when
that last-minute client change comes down the line and threatens
to derail the project. It also makes the clients feel empowered and
like they have a say in the process but at a point when a change in
direction isn’t catastrophic.

 Step 4. Build an Asset List
 Whether you’re working with an artist or building the entire

game yourself, it’s best practice to make a list of all the art, sound,
and copy (or text) assets you’ll need. Working through this list
after Step 3 is important because the game mechanics and any
specifi c art pieces and animations you need should be fresh in
your head. Following the Pac-Man theme, here is a sample asset
list. You can reference your wireframe from Step 2 to help you
remember what assets you’ll need for the non-gameplay screens.

 ● Game animations
 � Pac-Man

 ♣ Movement

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 29

 ♣ Power-up
 ♣ Death

 � Ghosts
 ♣ Movement
 ♣ Retreating movement

 ● Static game art
 � Maze walls
 � Food
 � Power-ups
 � Bonus food
 � Point displays

 ● Non-game screens
 � Loader artwork
 � Main Menu

 ♣ Title artwork
 ♣ Play button (three states: up, over, and down)
 ♣ How to Play button (three states: up, over, and down)
 ♣ View Scoreboard button (three states: up, over, and

down)
 � How to Play

 ♣ Rules copy
 ♣ Rules artwork
 ♣ Back to Main Menu button (three states: up, over,

and down)
 � View Scoreboard

 ♣ Scoreboard table artwork
 ♣ Back to Main Menu button (three states: up, over,

and down)
 � Results screen

 ♣ Score display artwork
 ♣ Play Again button (three states: up, over, and down)
 ♣ Post Score button (three states: up, over, and down)
 ♣ Back to Main Menu button (three states: up, over,

and down)
 � Post Score screen

 ♣ Confi rmation message
 ♣ View Scoreboard button (three states: up, over, and

down)
 ♣ Back to Main Menu button (three states: up, over,

and down)
 ● Audio

 � Sound effects
 ♣ Eating food
 ♣ Eating power-up
 ♣ Eating bonus food
 ♣ Eating ghost
 ♣ Ghost attacking Pac-Man/death
 ♣ Level begin

30 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

 ♣ Level end
 ♣ Game over

 � Music
 ♣ None, it’s Pac-Man!

 You probably noticed that nothing in this list defi nes how
any of these assets should look or sound, just the objects and
events they are associated with. What the assets look like should
largely be irrelevant to you as the developer, provided the assets
meet you or your company’s quality standards and any technical
requirements, which leads us to the next step.

 Step 5. Make a List of Technical
Requirements for Your Game

 This will include two sets of criteria: (1) the system require-
ments of the end user playing the game, and (2) any server-side
requirements your game needs in order to function, such as a
database and any scripts necessary to connect to it. For a simple
game, these requirements should be fairly succinct, and if you
are building the game for clients that are going to host the game
themselves, this list may have been provided to you entirely.

 Let ’s start with the system requirements for the game’s audi-
ence. Unless the game is an exact copy of another title you’ve
already released, you probably won’t know the exact machine
requirements necessary to run the game smoothly. Any estimates
you make will be vetted for accuracy during the testing process.
At the very least, you can set a screen resolution and minimum
version of the Flash Player that is capable of running the game.
One note about the Flash Player is that Adobe now periodi-
cally releases minor updates that add features in addition to fi x-
ing bugs. As a result, you must be cognizant of any cutting-edge
features that might necessitate a particularly patched version of
the player. Here is an example:

 ● Flash Player major version — 10
 ● Flash Player minor version — 10.0.2.13
 ● Screen resolution — 1024 � 768 or higher
 ● Connection speed — DSL or higher
 ● RAM — 512 MB �
 ● CPU — 1.5 GHz �

 These are fairly modest requirements for Flash games on the
web. Obviously, during the testing and quality assurance (QA) pro-
cess, you can adjust your initial numbers as necessitated by the
game’s feature set. Games with a lot of motion and many objects
moving on the screen at once are obviously going to need more
computing horsepower than a single screen with static game
pieces. Sometimes a feature can be compelling enough to justify

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 31

 a trade-off in higher system requirements and thus a reduced
audience. This decision must not be made lightly, however. For
instance, more robust AI that makes the game more enjoyable but
taxes the CPU is more justifi able than a bunch of real-time special
effects such as shadows or glows, which look nice but don’t add
any real gameplay value. You and your client’s mileage may vary,
but experience has shown me that the lower you set your techni-
cal barrier to entry, the more people will play your game.

 Next come the server-side requirements for your game. For
simple games with no data to be saved from session to session,
this is probably as simple as having an HTML page to house your
game’s SWF fi le. More and more, however, players expect more
robust functionality out of games on the web. The ability to save
their high scores and even maintain a profi le for larger games is
very popular, as it gives players bragging rights when they do well
and often affords some level of personalization.

 Depending on whether you’re doing the back-end integra-
tion (server-side scripts, database work, etc.) or you work with a
team, this list of requirements may look very different. If you work
at a company with a team that already has a database infrastruc-
ture in place, your requirements may look something like this:

 ● Methods required
 � Save score

 ♣ Parameters — score , number; initials , string; security
hash , string

 ♣ Returns 0 for success, – 1 for error
 � Load score table

 ♣ Parameters — size , number
 ♣ Returns list of initials and scores, highest to lowest

 Based on the wireframe example we have created throughout
the previous steps, these two methods (or functions) are all you
will need to post a player’s score and load a table of high scores.
The fi rst method, saving the score, would receive the player’s
score, their initials, and a security hash (which we’ll cover in
depth in Chapter 17). The second method, used when viewing the
high score table, would receive a table size (such as 10 or 20) for
the number of results to return. Regardless of whether your team
works in PHP, .NET, or some other back-end language, this simple
listing will let them know what code they need to expose to Flash
for the game to perform its operations.

 If you will be building these scripts yourself and don’t already
have a system in place for doing so, you’ll need to set up a data-
base structure to house all of your game’s data. If you are new to
this area of development but want to learn, I recommend start-
ing with PHP. It is free, it is fast, and it is relatively easy to pick up.
There are also many resources in books and on the web for how
to save data into a database with PHP.

32 Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN

 Step 6 (Optional). Diagram Your Classes
Using a UML Modeler

 UML stands for Unifi ed Modeling Language, and it is the stan-
dard for planning complex software through a visual process.
Basically, it involves visually showing the hierarchy of the classes
you intend to create alongside each other, with all the publicly
available properties and methods listed along with what they
accept and return. You may be wondering, “ Why would I want to
do that? Why can’t I just get started typing code and build it as I
go? ” The answer is simple: A UML diagram takes your whole proj-
ect into account in a single document. It is much easier to make
changes and correct inconsistencies and confusion in naming
conventions from this bird’s-eye view than when you’ve got a
dozen ActionScript fi les open and you’re trying to remember the
name of the method you’re trying to call from one to the next. You
can keep the diagram handy as you work, and there are programs
available that will take your completed diagram and turn it into
actual ActionScript class fi les, complete with all the methods and
properties ready to be used!

 Now you’re probably wondering, “ Well, if this step is so impor-
tant and helpful, why do you have it listed at the end as optional? ”
There are a couple of reasons for this. One reason is that for very
simple games on a tight timeline, a full-blown UML diagram may
yield low returns on time that could be better spent just knock-
ing out the code. If you’re pretty certain your game will only rely
on a couple of class fi les, UML is probably overkill. Second, while
many UML tool options exist, including a large number of free
offerings, I have yet to fi nd one that I wholeheartedly recommend
for Flash development. Well, I take that back. The best UML tool
for ActionScript I’ve ever used is Grant Skinner’s gModeler. It is
streamlined especially for this use, it was created in Flash so it
will run on any OS that supports the Flash Player, and it will gen-
erate code as well as documentation. Unfortunately, it is several
years old and will only generate up to ActionScript 2 code, leaving
AS3 developers like us in the cold. If you’re still doing work in AS2
(and there’s nothing wrong with that), I highly recommend using
it to model your classes.

 Techie Note

 If you’re already familiar with PHP, I would highly recommend looking into
AMFPHP. It allows you to send binary data in Flash’s native format rather
than name/value strings. Because of this, it allows you to send and receive
typed results (i.e., a number comes back as a number, not a string), and the
chunks of data are much smaller and faster.

Chapter 3 A PLAN IS WORTH A THOUSAND ASPIRIN 33

 Though I haven’t found my equivalent for gModeler for AS3,
I’ve found the free StarUML (http://www.staruml.com) to be a
solid title and fairly straightforward. Also, an Adobe employee has
created a tutorial showing how to generate stub code from your
diagrams much the same way gModeler did. These resources are
available on http://fl ashgamebook.com .

 I know this seems like a lot of steps just to get started if you’re
not used to this level of planning. Trust me, it will not only get
easier and more natural as you fi gure out what works best for
you, but you will fi nd that fewer surprises pop up down the road.
Now that you have your plan fi rmly in hand, it’s time to open that
copy of Flash.

 A Quick Review of the Planning Steps
 ● One- to two-sentence description
 ● Game screen wireframe and fl ow
 ● List of game mechanics
 ● List of assets (art, animation, sound, video, and copy)
 ● Technical requirements
 ● UML class diagrams

This page intentionally left blank

35
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 //FTW!

 In this chapter, we’ll cover best practices to use when program-
ming in ActionScript 3 (AS3). This includes smart class utilization,
using the event model, error handling, and data structures. We’ll
also cover a number of Flash’s idiosyncrasies that tend to trip up
developers coming to Flash from other languages.

 Fair Warning
 It ’s worth mentioning that this chapter (like the rest of this

book) assumes a familiarity with either ActionScript 1 or 2 or
another programming language. If you have no idea what objects,
variables, or functions are or have never used Flash at all, you will
be lost very quickly. Some familiarity with ActionScript 3 is ideal,
since we’ll also be moving pretty quickly through a wide variety of
topics, but it’s not absolutely necessary. The documentation that
comes with Flash expounds on all of these topics, so if you fi nd
yourself confused or want to learn more, you can check out those
examples. You can also always ask questions on any chapter in
this book at fl ashgamebook.com. If you’re an experienced AS3
user, be patient — we’ll get through the basics as quickly as pos-
sible and move on to the fun stuff!

 PART 1
 Classes

 As we learned in Chapter 1, classes are essentially the blue-
prints for objects in ActionScript (and many other object-oriented
programming languages). They defi ne the properties that are
inherent to that object as well as the methods that determine how
that object functions on its own and as part of a larger context.

 4

36 Chapter 4 //FTW!

 When you create an object from a class, that object is known as
an instance of that class. Every instance of a class may have differ-
ent specifi c values for its properties, but they all share the com-
mon architecture, so Flash knows that all instances of a certain
class will behave the same way. In its simplest form, instantiation ,
or creation, of an object looks like this in ActionScript:

 var myObject:MyClass = new MyClass();

 As a standard naming convention, classes should start with a
capital letter and then use InterCaps (or “ CamelCase ”) from then
on, denoting the start of a word with a capital letter. CamelCase
makes names in code much easier to read — take, for example, the
longest class name currently used in the Flash CS4 code base:

 HTMLUncaughtScriptExceptionEvent

 While this is something of an extreme example, note that it is
much easier to read than:

 htmluncaughtscriptexceptionevent

 Packages
 A set of classes with categorically similar or related function-

ality can be grouped together in what are known as packages .
Classes within the same package can reference each other with-
out any special code, while classes in different packages must
 import each other with a line of code, similar to the following:

 import fl ash.display.MovieClip;

 Note that, in this case, the MovieClip class is inside the display
package, which is part of the larger fl ash package. The standard
naming convention for packages is all lowercase letters, which
differentiates them from classes visually. Packages are repre-
sented in the fi le system as a series of nested folders. In the pre-
vious example, if the MovieClip class were not an included part
of the Flash Player, you could fi nd the MovieClip.as fi le inside a
folder called display , inside another folder called fl ash .

 Classes as Files
 To create a class, you simply open Flash or a text editor like

FlashDevelop and create a basic framework. All AS3 classes must
have this minimal amount of code in order to function:

 package fl ash.display {
 public class MovieClip {
 }
 }

Chapter 4 //FTW! 37

 Note that the names in bold are the custom package and class
names of your choice. All classes need is a class defi nition wrapped
by a package defi nition, placed in a folder structure that matches
the package hierarchy. This class won’t do anything, however, so
next we’ll cover adding properties and methods.

 Constructors
 Every class has a constructor , even if it does nothing and is not

explicitly defi ned. It is the function, with the same name as the
class, that is called when a new instance of the class is created.
In the case of our last example, even if we leave it out, Flash adds
the following to the class:

 package fl ash.display {
 public class MovieClip {
 public function MovieClip() {
 }
 }
 }

 The constructor allows us to run any initialization code that
the new instance might need, or it can do nothing, depending on
how your class is to be used.

 Constants, Variables, and Methods
 A class without any data or functionality inside it is not of very

much use, so we can defi ne variables, or properties, of the class
that will store information, methods, or functions that will per-
form actions. I’m going to assume you already know how to use
variables and methods, either from earlier versions of ActionScript
or another language. Constants are entirely new to AS3 but are not
a complicated concept. Essentially, they are variables that can
only be assigned a value once. When you declare a constant or
variable, it is best to give it a type , which tells Flash which class to
use as the blueprint for that variable. Here are a few examples:

 const myInt:int = -3; //WILL ALWAYS BE -3 AND CANNOT BE MODIFIED
 var myBoolean:Boolean = true;
 var myString:String = “ Hello World ” ;
 var myObject:Object = new Object();

 Giving a variable a type also saves memory, because Flash
knows the maximum amount of memory it needs to store an
instance of a specifi c class. If you don’t type a variable, as in the
following example, Flash must reserve a larger amount of mem-
ory to accommodate any possible value:

 var myMystery:* = “ ? ” ;

38 Chapter 4 //FTW!

 Once you assign a value to an untyped variable, it becomes
typed from then on, so attempts to change its type (like you could
in earlier versions of ActionScript) will result in runtime errors,
such as the following example:

 var myMystery:* = “ ? ” ;
 myMystery = 5; //WILL CAUSE A RUNTIME ERROR

 What ’s worse, the above example won’t be caught during com-
pilation, so it might get missed until your game is deployed live
for real users. Unless absolutely unavoidable (like an instance
where you simply don’t know what will be assigned to a variable),
 always type your variables. You’ll create far fewer headaches
down the road for yourself.

 When you defi ne methods, there are similar practices to follow.
It is best practice to defi ne what parameters a method will receive
and what, if anything, it will return:

 function myFunction (myParam:String):void {
 //COMMANDS HERE
 }

 In this example, the method accepts a single parameter, myP-
aram, and returns nothing. If you have a case where a method
needs to accept an unknown number of parameters, a slightly
different syntax can be used:

 function myFunction (… params):void {
 //COMMANDS HERE
 }

 Here , the single parameter, params, is prefi xed by three dots.
This signifi es to Flash that it should be treated like an array of val-
ues, so getting to each parameter that was passed must be done
through array syntax:

 function myFunction (… params):void {
 trace(params[0]);
 }

 It ’s important to remember that, when accepting a variable
number of parameters, type checking during compilation will
not catch any attempts to pass invalid data to the method. In this
case, it’s best to do some type of manual checking and generate
errors at runtime. We’ll cover more on errors shortly.

 function myFunction (… params):void {
 for (var i:int = 0; I < params.length; i + +) {
 if (!(params[i] is DisplayObject)) {
 throw new ArgumentError(“ Only DisplayObjects can be used

in myFunction. ”);
 }
 }
 }

Chapter 4 //FTW! 39

 The keyword void is used to denote a function that does not
return anything (and will cause an error if it attempts to), and all
other types that variables can use can also be used here. If you
leave off the return value altogether, you can opt to return some-
thing or not, depending on some piece of internal logic. However,
as a best practice, a method should always declare what it will
return, as it helps catch errors and maintains consistency.

 Getter/Setter Methods
 There are two special types of methods you can create when

you want to expose a variable outside its class but want to con-
trol how the variable is used. They are known as accessor or getter/
setter methods , and they are called like normal variable assign-
ments but act like functions underneath. You can use them to
make read-only variables or to perform actions on a value before
it is set as a variable. There are a few rules to follow when using
these special methods. Getter methods never accept any param-
eters and must specify a return type, whereas setter methods may
only have one parameter and never return anything. Let’s look at
a couple of examples in a single script:

 package {
 public class MyClass {
 protected var _maxNameLength:int = 8;
 protected var _name:String;
 protected var _lives:int = 3;
 public function get name():String {
 return _name;
 }
 public function set name(value:String):void {
 name = value.substr(0,maxNameLength);
 }
 public function get lives():int {
 return _lives;
 }
 }
 }
 //OUTSIDE CLASS
 var myInstance:MyClass = new MyClass();
 myInstance .name = “ CHRISTOPHER ” ;
 trace (myInstance.name); //OUTPUTS “ CHRISTOP ” ;
 trace (myInstance.lives); //OUTPUTS 3;
 myInstance .lives = 10; //THROWS ERROR

 The name getter/setter functions return the protected value
of _name , which would otherwise be inaccessible, and the name
setter function forces any attempts to assign a value to the _name
property to a fi xed length of eight characters. The lives getter is
an example of a read-only property — there is no accompanying
setter function. Any attempts to set the value will cause an error.

40 Chapter 4 //FTW!

 This is very useful when you need to use values inside the class
but also want external classes to be able to read the value.

 The standard convention for variable and method names is to
start lowercase and then use CamelCase for all subsequent words
in the name. There is some debate over how to delineate public
variables from protected, private, or internal ones. My preference
is to follow Adobe’s convention, which is to use an underscore
(“ _ ”) at the beginning of the name of any property that is not
expressly public. Doing so allows you to use getter/setter meth-
ods like the previous example, where _name was the protected
variable and name was used for the pair of methods. This yields
continuity in your naming and makes your code easier for others
(and yourself) to follow.

 Class Identifi ers
 Classes can use a few different identifi ers to determine how

they are exposed to other classes. The four available are:
 ● Public — The public attribute defi nes that a class can be

accessed or used from anywhere else.
 ● Internal — The internal attribute allows a class to only be

accessed by other classes in the same package; by default,
classes are internal unless specifi ed public, so internal
does not actually have to be used.

 ● Dynamic — If a class is dynamic, it can have properties
and methods added to it at runtime; by default, classes
are static and can only use the properties and methods
defi ned inside themselves.

 ● Final — If a class is fi nal, it cannot be extended by another
class (more on this shortly when we cover inheritance); by
default, classes can be extended and are not fi nal.

 All of these identifi ers can be used with each other, except
that public cannot be used with internal. Similarly, variables and
methods can have their own set of identifi ers used to defi ne how
they are exposed outside the class:

 ● Public — Like the class attribute, this denotes that a vari-
able or method can be accessed from anywhere, including
outside the class.

 ● Internal — Also similar to classes, this denotes that a vari-
able or method can only be accessed from inside its
package.

 ● Private — The private attribute prevents a variable or
method from being accessed outside its individual class.

 ● Protected — A protected attribute is pretty much like pri-
vate, except that protected variables and methods can also
be accessed by classes that extend the current class (more
on inheritance shortly).

Chapter 4 //FTW! 41

 ● Static — If a method or variable is static, it is part of the
class, not instances of the class, meaning that there is only
ever one value or functionality defi ned, and it is accessed
via the class name rather than an instance (e.g., MovieClip.
staticVar rather than myMovieClip.staticVar); it is impor-
tant to note that static properties and methods are not
inherited by subclasses.

 The fi rst four attributes in this list cannot be used with each
other, as they would confl ict, but static can be used in combina-
tion with any one of them.

 Inheritance and Polymorphism
 When you need to create a class that has the same functionality

as another class but requires some additional properties or meth-
ods, a good option to save time and coding is to extend the fi rst
class to a new class, known as a subclass . All public and protected
methods and variables that are not static will be available to the
new class. To clarify, any static properties of the parent, or super-
class , must be prefaced with the class name (as in the example
below). Additionally, any internal methods or variables will be avail-
able to the subclass if it is in the same package as its superclass. To
illustrate, let’s look at an example:

 package {
 public class SuperClass {
 static public var className:String = “ SuperClass ” ;
 }
 }
 package {
 public class SubClass extends SuperClass {
 public function SubClass() {
 trace(SuperClass.className); //OUTPUTS “ SuperClass ”
 trace(className); //THROWS ERROR
 }
 }
 }
 //FROM OUTSIDE EITHER CLASS
 trace (SuperClass.className); //OUTPUTS “ SuperClass ”
 trace (SubClass.className); //THROWS ERROR

 Occasionally , you’ll need to change the functionality of a
method in a subclass from the way it behaves in the superclass.
This change in functionality through inheritance is known as
 polymorphism . You can do this using the override keyword before
the beginning of the method, albeit with a number of caveats:

 ● Only methods may be overridden, no properties.
 ● Only public, protected, and internal methods may be

overridden.

42 Chapter 4 //FTW!

 ● Internal methods may only be overridden in subclasses in
the same package as the superclass.

 ● The new overriding method must match the composi-
tion of the original method, with the same parameters and
return value.

 Let ’s look at an example:

 package {
 class SuperClass {
 public var name:String = “ SuperClass ” ;
 protected var _number:Number = 5;
 internal var _packageNumber:Number = 7.5;
 private var _secretNumber:Number = 10;
 public function helloWorld():void {
 trace(“ HELLO WORLD ”);
 }
 }
 }
 package {
 class SubClass extends SuperClass {
 public function SubClass() {
 trace(name); //OUTPUTS “ SuperClass ”
 trace(_number); //OUTPUTS 5;
 trace(_packageNumber); //OUTPUTS 7.5
 helloWorld(); //OUTPUTS “ HI WORLD ” ;
 super.helloWorld(); //OUTPUTS “ HELLO WORLD ” ;
 trace(_secretNumber); //THROWS ERROR;
 }
 override public function helloWorld():void {
 trace(“ HI WORLD ”);
 }
 }
 }

 As you can see, when SubClass traces out properties it has
inherited from SuperClass, they stay intact, with the exception of
the private variable. Also, when helloWorld is run from SubClass,
it traces a different message than when run from SuperClass. That
said, there is a way to get at the SuperClass implementation of
helloWorld through use of the super keyword, which returns a ref-
erence to the superclass of the current class, allowing you access
to any methods you may have overridden.

 Interfaces
 One of the most commonly misunderstood (including by

myself for a long time) aspects of object-oriented program-
ming (OOP) is the concept of interfaces . It is confusing for a few
reasons, not the least of which is the confusion of an OOP inter-
face with a graphical user interface (like operating systems pro-
vide). An interface does not contain any code, outside of declaring

Chapter 4 //FTW! 43

 the public methods that a class will use and what each will
accept as parameters and what each will return. If a class is like
a blueprint of the specifi c directions for creating a new instance
of that class, an interface is like a checklist for that blueprint to
make sure it adheres to a certain specifi cation. Perhaps the best
way to understand how an interface is structured is to see one in
code:

 public interface IEventDispatcher {
 function addEventListener(type:String, listener:Function,
 useCapture :Boolean = false, priority:
int = 0,useWeakReference:Boolean = false):void;
 function removeEventListener(type:String, listener:Function,
 useCapture :Boolean = false):void;
 function dispatchEvent(event:Event):Boolean;
 function hasEventListener(type:String):Boolean;
 function willTrigger(type:String):Boolean;
 }

 Notice the differences between an interface and a class.
Interfaces are always public or internal, just like their class coun-
terparts, but none of the methods has any attributes because they
are all assumed to be public. Interfaces cannot include variables,
but they can include getter/setter methods, which can substitute
for variables.

 At this point, you might very well be asking, “ Why would I ever
bother to use an interface when I can simply extend a class to
make sure all the subclasses have the available methods? ” The
answer is that, unlike some other languages, classes in Flash can-
not inherit from multiple superclasses. This poses a problem
when you need to extend one class but include functionality from
another class in a different inheritance hierarchy.

 A good example of a situation like this is the IBitmapDrawable
interface that is part of the Flash display package. When you want
to draw something to a BitmapData object, you can use either
another BitmapData object or a DisplayObject. In order to keep
just any object from being passed to the draw method, both
BitmapData and DisplayObject implement the IBitmapDrawable
interface. The interface actually doesn’t do anything but enforce
this compatibility between two classes that have nothing to do
with each other. The draw method can then look like this:

 public function draw(source:IBitmapDrawable,
matrix:Matrix = null, colorTransform:ColorTransform = null,
blendMode:String = null, clipRect:Rectangle = null,
smoothing:Boolean = false):void

 When an object is passed for the source parameter, Flash
checks to see if the object implements the IBitmapDrawable
interface and can throw an error to let the developer know. Here

44 Chapter 4 //FTW!

 is another example of a class implementing an interface while
extending an unrelated class:

 package {
 import fl ash.events.IEventDispatcher;
 import fl ash.events.EventDispatcher;
 import fl ash.events.Event;
 import fl ash.geom.Rectangle;
 public class RectangleDispatcher extends Rectangle
implements IEventDispatcher {

 private var _dispatcher:EventDispatcher;
 public function RectangleDispatcher() {
 _dispatcher = new EventDispatcher(this);
 }
 override public function set width(value:Number) {
 super.width = value;
 dispatchEvent(new Event(Event.CHANGE));
 }
 override public function set height(value:Number) {
 super.height = value;
 dispatchEvent(new Event(Event.CHANGE));
 }
 public function addEventListener(type:String,

listener:Function, useCapture:Boolean = false,
priority:int = 0,useWeakReference:Boolean = false):void {

 _dispatcher.addEventListener(type, listener, useCapture,
priority, useWeakReference);

 }
 public function removeEventListener(type:String,

listener:Function, useCapture:Boolean = false):void {
 _dispatcher.removeEventListener(type, listener,

useCapture);
 }
 public function dispatchEvent(event:Event):Boolean {
 _dispatcher.dispatchEvent(event);
 }
 public function hasEventListener(type:String):Boolean {
 return _dispatcher.hasEventListener(type);
 }
 public function willTrigger(type:String):Boolean {
 return _dispatcher.willTrigger(type);
 }
 }
 }

 In this example, the class being extended is Rectangle, which
has no ties to the EventDispatcher hierarchy. By implementing
the IEventDispatcher interface and creating an instance of the
EventDispatcher class, we can enjoy both the functionality of a
Rectangle and an EventDispatcher. When the width or height of
this special rectangle changes, it will dispatch an event to anything
listening. We will cover more on events in an upcoming section.

 So the question now is probably “ When should I use inter-
faces? ” Unlike some OOP proponents who believe the answer is

Chapter 4 //FTW! 45

 “ always, ” I believe it really depends on the breadth of the game or
application you are building. Sometimes, in quick games where I
am the sole developer, I prefer to use inheritance because I usu-
ally have the luxury of defi ning my entire inheritance chain and
I don’t have to work within a preexisting framework. I fi nd inter-
faces most helpful when working with other developers (partic-
ularly those at other companies where we’re not eager to share
specifi c code with each other) because we can agree upon an
interface for our common class elements and integration of our
respective components is far more likely to work without a hitch
as a result. Interfaces are also extremely useful in creating fl exible,
reusable game engines for more complex games, as we will see in
Chapters 14 and 15. In the end, interfaces are just a tool and, like
any tool, should be used when called for and left alone the rest of
the time.

 Linking Classes to Assets in Flash
 A common staple of my game development (and arguably

one of the biggest advantages of developing games in Flash) is
the ease with which you can link a Flash class to an item in your
FLA library. Any item in your library can have an associated class
linked to it, but the ones you will probably use the most are the
DisplayObject subclasses Sprite and MovieClip. First, it’s impor-
tant to understand how Flash creates classes for library items.

 If you set the linkage property of a symbol in the library, it
has a class created for it when the SWF is compiled, regard-
less of whether or not one was explicitly defi ned. For example,
take a Sprite in an FLA library named “ square, ” with a simple
blue square inside it. Because the symbol is not a Sprite directly,
but rather an extension of a Sprite, a new class with the name
 “ square ” will be created at compile-time that extends the Sprite
and looks like this:

 package {
 import fl ash.display.Sprite;
 public class square extends Sprite { }
 }

 The reason Flash does this is because it needs a point of ref-
erence to be able to instantiate that symbol on the Stage if it is
used in script somewhere. To see the evidence of this, you can
look at all the classes embedded in a compiled SWF inside of
FlashDevelop. In Figure 4.1, you can see the Flash library on
the left, with the symbol exported with the name “ square, ” and
refl ected on the right is the FlashDevelop project panel with the
classes used in the SWF.

46 Chapter 4 //FTW!

 Figure 4.1 FlashDevelop can reveal the classes used in a SWF.

 If you had a class defi ned for the square, it would use that fi le
rather than generating its own. To see the result of this, we can
rename the linkage class for the symbol to uppercase “ Square ” to
match the name of a class I have defi ned for it:

 package {
 import fl ash.display.Sprite;

 public class Square extends Sprite {
 public function Square() {
 rotation = 45;
 }
 }
 }

 Now when the square is added to the Stage, it will be rotated 45
degrees.

 Class vs. Base Class
 When you open the linkage panel to assign a class to a symbol,

there is an additional fi eld that is used to defi ne the base class for
a symbol. The base class symbol is where you defi ne what class
you would like extended for that symbol. In the previous exam-
ple, the Square class extended from Sprite, so the base class for
that symbol was fl ash.display.Sprite, as shown in Figure 4.2.

 Suppose , however, that we wanted to create multiple squares
of different colors. They wouldn’t need any additional functional-
ity on top of what Square already provides, so making an individ-
ual class for each one would be tedious. Instead, we could make
multiple clips of different colors and set each of their base classes
to Square. Then the individual class names could be squareBlue,
squareGreen, etc. An example is shown in Figure 4.3.

 Figure 4.2 The properties panel shows the linkage for the square Sprite.

 Figure 4.3 The base class can be set to use a class for multiple symbols with different
assets.

48 Chapter 4 //FTW!

 Using Exported Symbols with No Class File
 I try to make it a policy to explicitly write a class fi le for any

symbol that I intend to export for ActionScript, because it is
easier to keep track of which symbols are available to me, and it
allows me to quickly add functionality as it becomes necessary.
Sometimes, however, as in the case of the previous Square exam-
ple, some of the symbols I’m using all derive from a basic class
I’ve created and are only differentiated by the assets inside them.
To use these classes in your code, you can simply refer to the class
name like you would any other. If I had a document class for the
previous example, it might look something like this:

 package {
 import fl ash.display.Sprite;
 public class ClassesExample extends Sprite {
 public function ClassesExample() {
 var blue:Square = new squareBlue();
 addChild(blue);
 var green:Square = new squareGreen();
 addChild(green);
 }
 }
 }

 You can use it like a normal class, because when Flash com-
piles the SWF, it will be a normal class, just as though you’d writ-
ten it yourself.

 getDefi nitionByName and Casting
 Suppose you needed to instantiate a series of symbols or

classes that followed a numeric sequence — say, for the purposes
of our example, “ square1 ” through “ square10. ” It would be very
tedious to have to instantiate them one at a time and create a lot
of extra code. It would probably look something like this:

 var square:Square = new square1();
 addChild (square);
 square = new square2();
 addChild (square);
 …
 square = new square10();
 addChild (square);

 Luckily , Flash gives us the ability to look up a class by its name.
In the fl ash.utils package there is a method called getDefi nition-
ByName , which accepts said name as a string parameter.

 for (var i:int = 1; i < = 10; i + +) {
 var squareClass:Class = getDefi nitionByName(“ square ” + i) as Class;
 var square:Square = new squareClass();
 addChild(square);
 }

Chapter 4 //FTW! 49

 It returns a generic object that is a reference to the class, if it
exists. That object can then be converted to a class through an oper-
ation known as casting . Casting is the process of telling ActionScript
to treat one object like a different kind of object. It is most often used
to treat a subclass like its superclass, which is known as “ safe ” cast-
ing, because all of the functionality will be guaranteed to carry over
from the superclass. An example of this would be with Sprite and
MovieClip. MovieClip extends Sprite, so it is safe to cast a MovieClip
as a Sprite because their public methods and variables will match.
If we were to do the opposite, cast a Sprite as a MovieClip, it would
be considered an “ unsafe ” casting, because a Sprite does not con-
tain all of the methods and variables of a MovieClip. While Flash
will let you cast either direction, it’s generally a good idea to avoid
casting to a subclass unless you know for certain that the methods
and variables you want to call will be available. In the case of the
above example, converting a base object to a class is technically an
unsafe casting, but the Class class (a confusing nomenclature to be
sure) contains no additional public methods or variables so there is
no danger of causing an error. We’ll use casting and getDefi nition-
ByName regularly later in game examples.

 PART 2
 Events

 A core component of ActionScript 3 is the use of events. Event
objects can be thought of as messages that are sent between
objects to notify each other of, well, events. When an object is set
up to receive events, it is known as listening . When an object sends
an event, it is known as dispatching . In their most basic form,
events contain a type (the name of the event being sent), a target
(the object that dispatched the event), and a currentTarget (the
object currently processing the event after having received it). A
basic event is merely a notifi cation that something happened, and
you’ll need to access the object that sent the event in order to get
any more information. Events can be customized, however, to send
any amount of data along with the message, but we’ll get to that
shortly. First let’s look at how objects can send events.

 dispatchEvent
 Many of the core classes of AS3 dispatch events. To dispatch an

event, an object must either extend the EventDispatcher class in some
way or implement the IEventDispatcher interface (see the interface
example in the previous section on classes). If it meets one of these
two criteria, you simply call the dispatchEvent method and pass it an

50 Chapter 4 //FTW!

 event object. Event objects are created from the Event class, or a sub-
class of it. The basic Event class has a number of predefi ned names,
or enumerations , of event types, but you can use any name you want:

 var event:Event = new Event(Event.COMPLETE);

 or

 var event:Event = new Event(“ myCustomEventName ”);

 It is a good idea, however, to defi ne your event names as constants
somewhere so you avoid misspellings. For example, if my game class
needed to tell another object when the game had started and ended,
it would be wise for me to defi ne these event names so they can be
referenced later. The typical event naming scheme is to use all capi-
tal letters, with underscores between words, for the property name
and CamelCase for the actual value, as in the next example:

 package {
 import fl ash.display.Sprite;
 import fl ash.events.Event;
 public class Game extends Sprite {
 static public const GAME_START:String = “ gameStart ” ;
 static public const GAME_OVER:String = “ gameOver ” ;

 protected function startGame():void {
 //START GAME LOGIC
 dispatchEvent(new Event(GAME_START));
 }
 protected function gameOver():void {
 //GAME OVER LOGIC
 dispatchEvent(new Event(GAME_OVER));
 }
 }
 }

 There are a few things to note about that example. First, the
event names are not only public constants, but they’re also
static, which makes them easily accessible from anywhere. Next,
the Sprite class extends EventDispatcher, so all my methods are
ready for me to use without defi ning anything extra, which is very
convenient. And, fi nally, I often create and dispatch my events
in a single line. You’ll rarely need to keep a reference to an event
object after you create it, unless you’re adding a bunch of extra
data to it, so I prefer this method for basic events because it’s one
less line to type and one less variable to assign. Now let’s look at
how another class might listen to these events.

 addEventListener, removeEventListener,
and Event Phases

 There are a couple of different ways to listen for events, and
these depend on what phase an event is in. When a DisplayObject

Chapter 4 //FTW! 51

 on the Stage dispatches an event, it goes through three phases:
capture, target, and bubble. In the capture phase, the event trav-
els all the way from the Stage down through the display list chain
to the DisplayObject that sent the event. Once the event reaches
its “ owner, ” it enters the target phase. Finally, the event travels
back up the display list to the Stage in the bubbling phase. Any
object along the path of the display list can listen for these types
of events, assuming the event is created that way. The reason for
this particular sequence is so objects in the display list can easily
listen for events further down the chain, such as mouse or key-
board input. For non-DisplayObjects (or DisplayObjects that are
not on the Stage), events have only one phase: the target phase.
In other words, the only way to listen for these events is to listen
to the object directly. Let’s look at some examples to make this a
little clearer.

 We ’ll start with a generic object fi rst, since their events are sim-
pler and can only be listened to in one way. This is also the most
common way to listen for messages — during the target phase.
To listen for an object’s events, you simply call its addEventLis-
tener method and pass it a number of parameters. We’ll use the
example of the Game class from above, assuming that there is an
instance of this class in the document class of an FLA.

 package {
 import fl ash.display.Sprite;
 import fl ash.events.Event;
 public class Document extends Sprite {
 public var game:Game;
 public function Document() {
 game = new Game();
 game.addEventListener(Game.GAME_START, gameStart);
 game.addEventListener(Game.GAME_OVER, gameOver);
 addChild(game);
 }
 protected function gameStart(e:Event):void {
 trace(e);
 }
 protected function gameOver(e:Event):void {
 trace(e);
 }
 }
 }

 The two required parameters of the addEventListener method
are an event type (as a string) and a method to call when that
event occurs. Note that I can use protected (or private, or inter-
nal) methods as my event listeners — this is the only time where
something that occurs outside this class can access an other-
wise off-limits method. A method that is set up to receive events
must accept a single parameter, the event object. There are a few
other parameters that are optional when setting up a listener,

52 Chapter 4 //FTW!

 and I actually like to assign them, control freak that I am. A third
parameter is useCapture , which is false by default. We will cover
it momentarily as it deals with event phases and the display list.
Another parameter is the listener priority , which is 0 by default.
The priority level tells Flash which listeners should get the event
fi rst — the higher the number, the higher the priority. If it is critical
for one object to receive an event before another, this is the best
way to ensure that. I usually leave it at 0.

 The fi nal parameter is useWeakReference , which might be the
coolest feature of events and is false by default. To fully appreci-
ate what it does, you fi rst need to understand how Flash’s gar-
bage collector (the mechanism that removes unused objects from
memory) works. We’ll cover the garbage collector in more depth
when we reach the section on Flash idiosyncrasies, but suffi ce it
to say for the moment that by setting useWeakReference to true
the listener will automatically be removed when the object it is
listening to is deleted from memory. Unless you have a specifi c
reason you do not want the listener to be removed automatically,
I recommend always setting useWeakReference to true. The fol-
lowing is a modifi cation of the two lines from the above example,
written to use weak references:

 game .addEventListener(Game.GAME_START, gameStart, false, 0, true);
 game .addEventListener(Game.GAME_OVER, gameOver, false, 0, true);

 When you no longer need to listen for an event (or if you
are not using weakly referenced listeners), you can use the
 removeEventListener method with the same fi rst three param-
eters you called in addEventListener to disengage a listener from
an object. For the example above, when the Document class was
done listening to the game for events, it could call these two lines:

 game .removeEventListener(Game.GAME_START, gameStart, false);
 game .removeEventListener(Game.GAME_OVER, gameOver, false);

 Like addEventListener, the third parameter is optional,
depending on whether you’re using the capture phase, which we
will cover now.

 As I mentioned earlier, if you’re passing events between
DisplayObjects, you have a few different options available to you,
depending on where your objects are in relation to each other.
Suppose the object you want to listen to is a child object, either
directly or through the display chain, of your current object. In
this case, you can listen to the target object in all three phases.
When you listen during the capture or bubbling phases, you don’t
add the listener to the object itself but rather the object that is lis-
tening, as the event will be broadcast to your object as it “ passes
through. ” By default, most events do not bubble unless explicitly
told to do so. To be able to listen to the Game class’s events from

Chapter 4 //FTW! 53

 all three phases, we would fi rst have to modify the dispatchEvent
calls to look like this:

 dispatchEvent (new Event(GAME_START, true));
 dispatchEvent (new Event(GAME_OVER, true));

 The second parameter when creating a new event tells the
event whether or not to bubble. Now that these events are bub-
bling, we can modify the listeners in the Document class to
account for all three event phases:

 //CAPTURE PHASE
 addEventListener (Game.GAME_START, gameStart, true, 0, true);
 //TARGET PHASE
 game .addEventListener(Game.GAME_START, gameStart, false, 0, true);
 //BUBBLE PHASE
 addEventListener (Game.GAME_START, gameStart, false, 0, true);

 Note the subtle differences between how the listeners are
added. The capture and bubbling listeners are identical, except
for the useCapture parameter, and the target listener is attached
to the game object directly. There are few times when you’d prob-
ably use all of these listener types at once. I almost always listen
at the target phase, because I usually know which objects I need
to receive events and which don’t matter. One scenario where it
is very helpful, though, is when you need to stop an event from
being broadcasted.

 Event Propagation and Cancellation
 By default, events, particularly those in DisplayObjects, will

move through their hierarchy uninterrupted, notifying each lis-
tener in the chain as it reaches it; however, there might be some
scenarios where you would want to stop certain events from
reaching their destination. A common example is with mouse
input. Say you had an application or a game with a side panel
containing some buttons and other information. If you were dis-
playing a message and wanted to disable input to the panel while
the message was being shown, you could tell the panel to disable
itself, which would in turn disable each of the buttons. However,
this is a lot of code to write, and it is more easily handled by can-
celing events.

 When one of the buttons in the panel is clicked on by the
mouse, for example, it generates an event (specifi cally, a
MouseEvent) that moves through each display list level until it
reaches the object that was clicked. If you listen for that event dur-
ing the capture phase in some parent object of the panel, you can
stop that event from proceeding any further and ever reaching its
destination. You do this through the use of a couple of methods
of event objects: stopPropagation and stopImmediatePropagation .

54 Chapter 4 //FTW!

 They both do virtually the same thing but with minor differences.
The former stops any objects further down the display chain from
receiving the event. The latter stops those objects, as well as any
other listeners in the current DisplayObject.

 Custom Events
 If you fi nd during development that you need an event type

that contains more information than a generic event, you can
easily extend the Event class to make custom events. Let’s look at
one quick example:

 package {
 import fl ash.events.Event;
 public class GameEvent {
 static public const GAME_START:String = “ gameStart ” ;
 static public const GAME_WIN:String = “ gameWin ” ;
 static public const GAME_LOSE:String = “ gameLose ” ;
 public var score:Number;
 public var timeLeft:Number;
 public var level:int;
 public var diffi culty:int;
 public function GameEvent(type:String,
 score:Number = 0,
 timeLeft:Number = 0,
 level:int = 1,
 diffi culty:int = 1,
 bubbles:Boolean = false,
 cancelable:Boolean = false) {
 this.score = score;
 this.timeLeft = timeLeft;
 this.level = level;
 this.diffi culty = diffi culty;
 super(type, bubbles, cancelable);
 }
 override public function clone():Event {
 return new GameEvent(type, score, timeLeft, level,

diffi culty, bubbles, cancelable);
 }
 }
 }

 Since we’ve created a custom event class, it makes more sense
to keep the event type names here, rather than in the Game
class. In this case, GAME_OVER has been split into GAME_WIN
and GAME_LOSE, for more specifi c events. Also, we’ve included
holder variables for the game’s current score, time left, diffi culty,
and current level, if they were applicable. Obviously, you would
tailor these properties to your specifi c game. In the Game class,
we would now dispatch events like this:

 dispatchEvent (new GameEvent(GameEvent.GAME_START));

Chapter 4 //FTW! 55

 There are a couple of things to remember when extending the
Event class. One is that any additional properties you want stored
must have variables created for them, so the constructor can
assign them or they can be reassigned after the event object is
created. Another point to keep in mind is that you need to explic-
itly call the Event superclass constructor through super() and pass
it at least the fi rst parameter (and preferably all of them). The fi nal
aspect of events to remember is that you should provide a clone
method to override the original. The clone method is automati-
cally called by Flash when events are redispatched from a listener
object. If an override is not provided, it will return a generic event
rather than your custom type. While it is not mandatory to pro-
vide it, it is a best practice and will prevent problems from crop-
ping up down the road where your data gets lost along the way.

 That completes this section on events. While there are even
more aspects of the event model in Flash that we could explore,
what we’ve learned represents the core functionality that you will
likely use when developing games.

 PART 3
 Errors

 No one likes errors in their code. In fact, no one likes their
mistakes being pointed out by others, let alone a computer. It
may sound like an absurd statement, but errors in Flash really
are your friends. In ActionScript 1 and 2, errors were passive; if
they occurred, things might break, but you wouldn’t necessarily
know where or why. When I fi rst switched to AS3, I couldn’t stand
how many errors I got and it drove me nuts. Now that I’ve gotten
used to it, I’m very appreciative when Flash presents me with a
batch of errors. I would much rather know that something hap-
pened and be able to fi x it than have it fail silently and have no
idea why my application isn’t running as expected. And, really,
though my ego might not like to admit it, those errors were
probably in my AS1 and AS2 code, I just didn’t know it. As some
of you may already know, errors in ActionScript 3 make them-
selves known by bringing your program (or at least method) to
a screeching halt and displaying a message in the output win-
dow. Anyone fi rst developing in AS3 is bound to cause quite a
few errors. You’ll also note quickly that the Flash documentation
tends to refer to them in a couple of different ways. Sometimes
errors are referred to as exceptions . Also, because errors are
derived from the Error class, there are a number of subclasses
that extend from it, like ReferenceError or ArgumentError. These
subclasses give you more detailed information about what went

56 Chapter 4 //FTW!

 wrong. There are two main kinds or errors you’ll run into during
development.

 The fi rst are compile-time errors, which crop up when you go
to publish your SWF. These are my favorite errors, because they
let you know immediately that you did something fl at-out wrong .
The SWF won’t even work correctly as a result, so you’re forced to
go back and fi x them. The most common errors are typographic:
mistyped variable names, assigning the wrong type of value to a
variable, calling a method that doesn’t exist. While they can be
annoying if there are many of them, it’s always better to know
about problems up front and fi x them.

 The other kind is a runtime error, which occurs while
your SWF is running. These are equally helpful, but they have
to be discovered and are most likely to crop up during test-
ing. They’ll only occur when you run the piece of code with the
problem in it. The other trick with runtime errors is that they’re
not always mistakes per se . Sometimes an error occurs when
certain events are dispatched and nothing is listening to them.
In this case, the error acts as a notifi cation that something went
wrong and that you need to account for the scenario in which it
took place.

 Regardless of the type, errors should always be handled. There
are a couple of ways to fi x errors. Most of the time, the error is the
result of a coding mistake or omission; however, sometimes an
error can occur because a piece of functionality has other depen-
dencies, like external fi les, which are not available during devel-
opment. In this case, you can prevent the errors from bringing
the rest of your code to a halt by catching them.

 try, catch, fi nally
 If you want to trap an error and keep it from halting the rest of

your code, the best way to do that is to wrap the code inside a try
statement block:

 try {
 //ERROR-INDUCING CODE HERE
 }

 If an error occurs inside of a try block, it will attempt to be
caught by an adjacent catch block:

 try {
 //ERROR-INDUCING CODE HERE
 } catch (error:Error) {
 //NOTIFY DEVELOPER OF ERROR
 trace(error);
 }

Chapter 4 //FTW! 57

 If no error occurs, the code in the catch block will not execute.
You can also use multiple catch blocks to catch different kinds of
errors rather than catching all errors with one lump block:

 try {
 //ERROR-INDUCING CODE HERE
 } catch (error:ArgumentError) {
 //CATCHES JUST ARGUMENT ERRORS
 trace(error);
 } catch (error:ReferenceError) {
 //CATCHES JUST REFERENCE ERRORS
 trace(error);
 } catch (error:Error) {
 //CATCHES ALL OTHER ERRORS
 trace(error);
 }

 If you want some type of code to run regardless of whether an
error occurs, you can put it in a fi nally block, which appears after
all catches. If no error occurs, the sequence will be try � fi nally. If
an error occurs, it will follow try � catch(es) � fi nally:

 try {
 //ERROR-INDUCING CODE HERE
 } catch (error:Error) {
 //NOTIFY DEVELOPER OF ERROR
 trace(error);
 } fi nally {
 trace(“ MADE IT THROUGH TO THE END ”);
 }

 Throwing Your Own Errors
 Sometimes you may want to cause errors yourself to let you or

another developer using your code know that they’re attempt-
ing to perform an illegal operation. Creating an error is known as
 throwing , to coincide with the catch metaphor. To throw an error,
you simply use the throw statement, which is a core part of AS3:

 throw new Error(“ This is a custom error message. ”);

 You don’t actually have to specify a message for your error, par-
ticularly if you intend to create your own Error subclass (where
the message could be predetermined by the class), but I fi nd
it very helpful to do so. If you’re working in a complex applica-
tion that has a lot of opportunities for errors, you can also defi ne
error codes to provide differentiation as a second parameter to
the Error constructor. I don’t tend to throw errors as much in my
game-specifi c classes, but I use them frequently when creating
utility classes that may be shared among a number of projects or
other developers.

58 Chapter 4 //FTW!

 Creating custom error classes is even more straightforward
than custom event classes, so I’ll give only a brief example of how
to do so. I have found that the basic included error types are more
than enough to handle the errors I need to create. Here is a quick
example of a GameError class that you could use to hold a num-
ber of predefi ned error messages:

 package {
 public class GameError extends Error {
 static public const INVALID_INPUT:String = “ That is not a

valid form of input for this game. ” ;
 static public const GAME_NOT_READY:String = “ The game

object is not yet initialized. Run init() before starting
game. ” ;

 public function GameError(message:String = “ “) {
 super(message);
 }
 }
 }
 //IN GAME CLASS
 public function startGame():void {
 if (!initialized) throw new GameError(GameError.
GAME_NOT_READY));

 //OTHER CODE
 }

 In this example, the GameError class (much like an Event sub-
class) predefi nes the error messages the game will use for easy
access and syntax checking. If the game is not initialized when
startGame is called, it will throw a GAME_NOT_READY error.
We’ll cover more on how to overcome Flash-created runtime
errors in Chapter 17.

 PART 4
 Data Structures and Lists

 One of the most important abilities in programming is being
able to group similar objects together in lists for easier tracking;
for example, a game might have a player, a number of differ-
ent kinds of enemies, and a number of pick-up items. It is inef-
fi cient, or even impossible in some scenarios, to keep track of
the enemies and pick-ups with individual variables, so we need
more complex data structures to store them and make them eas-
ily accessible. AS3 gives us four main containers for this type of
data and, depending on what type of information you’re trying
to store, a fi fth one, as well. We’ll look at each of these structures,
their pros and cons, the best tasks for them, and how to iterate , or
step through, each of them.

Chapter 4 //FTW! 59

 Objects
 At the root of all the different classes in ActionScript are basic

objects. They are the building blocks for every other more com-
plex data type. They are also dynamic and therefore useful by
themselves as lists. Every variable added to them is indexed by a
string name. Here is an example that stores a Sprite in a list by its
name:

 var enemyList:Object = new Object();
 var enemy:Sprite = new Sprite();
 enemy .name = “ BadGuy1 ” ;
 enemyList [enemy.name] = enemy;

 Now , let’s say you have a whole batch of enemies. You could
use a for loop to add them to the list:

 var enemyList:Object = new Object();
 for (var i:int = 0; i < 10; i + +) {
 var enemy:Sprite = new Sprite();
 enemy.name = “ BadGuy ” + i;
 enemyList [enemy.name] = enemy;
 }

 Later on, if you need to perform an action on all your enemies,
you could simply run another for loop, but this time a for … in loop:

 for (var i:String in enemyList) {
 var enemy:Sprite = enemyList[i];
 //DO SOMETHING TO ENEMY SPRITE
 }

 It ’s worth noting that when you iterate through an object using a
 for … in loop it goes through the object in reverse order from new-
est item added to oldest, so you can’t count on an object for your
items to be in a particular order. However, when order doesn’t mat-
ter in your list, this is a powerful tool because you can gain direct
access to any item in the list. If you need to remove an item from
an object list, you simply use the delete command along with the
item’s key. Items in objects are “ keyed off ” of a string value. In the
example above, each enemy in the list is indexed by its name,
and future attempts to access this enemy can only be done if you
know its name or run through a loop to fi nd it. Suppose when the
user clicks on an enemy it should be destroyed and therefore be
removed from the list. Once the enemy is clicked on, you have a
reference to it through a MouseEvent. You could then remove it
from the list, like in this example:

 protected function enemyClicked(e:MouseEvent) {
 var enemy:Sprite = e.target as Sprite;
 delete enemyList[enemy.name];
 //REMOVE DISPLAY OBJECTS, ETC
 }

60 Chapter 4 //FTW!

 Pros: Objects make it easy to access items, to iterate through
quickly, and to garbage collect.

 Cons: Objects are unordered; they must have a unique string
property like a name associated with whatever you’re stor-
ing (using the same string twice will override the fi rst one).

 When to use: Objects are best used when you’re not inter-
ested in the order of a group of items and when you have a
unique string identifi er, such as a name, to use.

 Arrays
 Up until AS3, objects and arrays were the only two native types of

data storage available in Flash. An array is an ordered list of items that
are indexed by number, starting at 0. Arrays can have an unlimited
number of items added to them using the push , unshift , and splice
commands. When an item is removed using the pop , shift , or splice
commands, the array size, or length , is reduced. Items in the list can
be set to null values, but the null still occupies a slot in the array. Like
objects, arrays are easy to set up and use. Once an array is created,
the push command is used to add items to the end of it. Likewise, the
 unshift command can be used to insert items at the front:

 var enemyList:Array = new Array();
 for (var i:int = 0; i < 10; i + +) {
 var enemy:Sprite = new Sprite();
 enemyList.push(enemy);
 }

 One big advantage of arrays is the ability to easily combine
them. Say you had separate lists of enemies, obstacles, and pick-
ups, and you needed to perform an operation on all of them
but also keep them in their discrete lists. You can use the concat
method to concatenate the arrays together into one list and only
loop through one larger array:

 var combinedList:Array = enemyList.concat(obstacleList,
pickupList);
 for (var i:int = 0; i < combinedList.length; i + +) {
 var item:Sprite = combinedList[i];
 //PERFORM SOME OPERATION ON EACH ITEM
 }

 Another advantage of using arrays is the sorting options avail-
able. Because it is an ordered list, the order can be changed depen-
dent on almost any criteria you specify using the sort and sortOn
commands. The sortOn method is particularly helpful when you
have an array of DisplayObjects like Sprites. Say you wanted to sort
the list by their x positions from left to right. The code would prob-
ably look something like this:

 enemyList .sortOn(“ x ”);

Chapter 4 //FTW! 61

 There are also special constants built into the array class that
allow you to specify sorting order. By default, arrays will sort in
ascending order, meaning from smallest to largest. You can add a
second parameter to the sortOn method to specify a different order:

 enemyList .sortOn(“ x ” , Array.DESCENDING);

 For all this fl exibility in ordering, arrays are not without their
shortcomings. Unlike the object example where we were able to
pinpoint an item in the list based on its name, there is no safe way
to do that with arrays. You could theoretically store each item’s
index in the array in the item itself, but that would assume that the
array order would never change at all — a largely unsafe assump-
tion to make. To fi nd an item in an array, you must iterate through
it, compare each item to the one you’re looking up, and break out
of the array once you’ve found it to minimize processing cycles:

 protected function enemyClicked(e:MouseEvent) {
 var enemy:Sprite = e.target as Sprite;
 for (var i:int = 0; i < enemyList.length; i + +) {
 if (enemyList[i] = = enemy) {
 enemyList.splice(i, 1);
 break;
 }
 }
 }

 The larger the array is, the longer this process takes, and it is
obviously way less effi cient than simply keying off of a value like
in an object. AS3 added two methods that simplify the coding of
this considerably: indexOf and lastIndexOf . These two methods
basically do the search for you, simplifying your code to:

 protected function enemyClicked(e:MouseEvent) {
 var enemy:Sprite = e.target as Sprite;
 var index:int = enemyList.indexOf(enemy);
 enemyList.splice(index, 1);
 }

 The lastIndexOf method does exactly the same search but
starts at the end of the array and counts down. While there is defi -
nitely less to type and it is cleaner than a for loop, the underlying
process is still the same and large arrays are still taxing on Flash.

 Pros: Arrays are ordered and easy to combine, with lots of
sorting options.

 Cons: Accessing specifi c items in arrays is slower (requires itera-
tion); arrays are slightly slower to iterate through than objects.

 When to use: The best time to use an array is when your items
must be able to be sorted and the order matters. Arrays
also do not have to store all of the same type of item, mak-
ing them a little bit more fl exible for general-purpose use
(see vector discussion, below).

62 Chapter 4 //FTW!

 Vectors
 A vector is simply a typed array, meaning that all items in the

list must be of the same type. By enforcing typing, vectors are
faster to iterate through and process and take up less memory.
They also have the option of being a fi xed length, meaning no
more items can be added to them. They are declared slightly dif-
ferently than arrays, but all of their other methods are the same:

 var enemyList:Vector. < Sprite > = new Vector. < Sprite > ();
 for (var i:int = 0; i < 10; i + +) {
 var enemy:Sprite = new Sprite();
 enemyList.push(enemy);
 }

 Pros: Vectors offer all of the pros of arrays except the ability to
combine different types; they are faster to iterate through
than arrays.

 Cons: Vectors still requires iteration to access specifi c items
so they are a little slower than objects; they require
Flash Player 10 (not available if you’re still publishing for
Player 9).

 When to use: If at all possible, you should always use vec-
tors over arrays if all of your items are of the same type.
Typically, in a game, your lists will already be homoge-
neous anyway, so switching to a vector buys you some
extra performance.

 Dictionaries
 Just as the Vector object improved upon arrays for ordered stor-

age, AS3 added a new class to improve on basic objects for stor-
ing unordered lists: the Dictionary object. Unlike regular objects,
which require a string to be used as the key for an item, dictionaries
can use any data type, including the item itself. This makes them
even easier to use for complex data types because you don’t have
to have a unique string to identify items. The Dictionary construc-
tor also contains one parameter, called weakKeys , which defaults to
false. When a dictionary uses weak keys if an item in the list and its
key are one and the same, and you remove the item from the list,
the key is removed, as well. For this reason, I like to set weakKeys to
true. Here is the enemyList example, using a Dictionary object:

 var enemyList:Dictionary = new Dictionary(true);
 for (var i:int = 0; i < 10; i + +) {
 var enemy:Sprite = new Sprite();
 enemyList[enemy] = enemy;
 }

Chapter 4 //FTW! 63

 As you can probably already tell, getting access to a specifi c
item in a dictionary is also easier than with a traditional object.
With Dictionary objects, it is necessary to use the new for each
loop in AS3:

 for each (var enemy:Sprite in enemyList) {
 //DO SOMETHING TO ENEMY SPRITE
 }

 The delete command applies here the same way it does with
regular objects:

 protected function enemyClicked(e:MouseEvent) {
 delete enemyList[e.target];
 }

 Pros: Dictionaries offer the ability to key off any value, includ-
ing items themselves; they provide fast, direct access for an
object to individual items and can store items of any type
together.

 Cons: Dictionaries are unordered; they are not as helpful for
lists of primitive values like strings or numbers.

 When to use: As much as possible! The Dictionary class is
outstanding for storing all unordered lists of complex
objects.

 ByteArrays
 Though not useful for storing lists of objects, the ByteArray

class is designed to store raw binary data, making it a perfect (in
fact, the only) candidate container for things like image or sound
data. We won’t really use ByteArrays in this book, but they are very
fast and worth mentioning since they are often overlooked.

 So What Should I Use For My Lists?
 That answer, as with so many question, is “ depends. ” I tend

to like to use dictionaries to keep track of all my object lists in a
game and then use arrays or vectors only when I need their sort-
ing abilities. You really can’t beat a dictionary for ease of use or
speed. If I must have an ordered list, I would prefer a vector to an
array due to its slight edge in speed. This is not to say that basic
objects and arrays are no longer useful. Objects are still great con-
tainers for dynamic data, but not as fast for lists as dictionaries.
Arrays are great to fall back on if you can’t guarantee that all your
list items will be of the same type or if you’re working with older
classes that aren’t confi gured to handle vectors.

64 Chapter 4 //FTW!

 Custom Data Structures
 In the event that you need even more functionality than these

built-in classes afford, you can of course extend any of them to a
new class. One important thing to remember about all of these
classes is that they are dynamic , allowing them to have any prop-
erties added to them at runtime. In order for your subclasses to
inherit this same functionality, they must also be dynamic. We’ll
look at an example of a custom data structure (though not an
extension of any of these) in Chapter 15.

 PART 5
 Keep Your Comments to Everyone Else!

 Probably the single-most overlooked task of any developer,
particularly in crunch time, is commenting code. Comments are
invaluable when handing code off to another developer or even
just returning to it later. The convention is usually the more com-
ments the better, but this can actually sometimes make code
harder to read. Here are a few tips for commenting your code:

 ● Don’t comment the obvious — If a line of code sim-
ply declares a variable called “ player, ” it should be fairly
self-explanatory what is happening; extra comments like
 “ //CREATING PLAYER OBJECT ” simply clutter up the code.

 ● Be thorough, but concise — Explain as much as you can
in as few words as you can; if comments break onto mul-
tiple lines or trail off so the reader has to scroll sideways, it
breaks the overall fl ow of the code.

 ● When possible, use the ASDoc formatting standards of com-
menting classes — This primarily means creating comment
blocks in a specifi c format (established by Adobe) just prior
to properties and methods; by creating your comments this
way, documentation can easily be generated for your code,
and many script editors such as FlashDevelop can use the
comments in tooltips to help remind you of proper syntax
(see below for example).

 ● Keep comments correct — This may sound like an unneces-
sary statement, but if you write your comments for a piece
of functionality, and later that functionality has to change,
then your comments must be updated, too.

 ● Use header comment blocks — Sometimes a simple, com-
plete explanation in one place is more effective than a
bunch of lines spread out over a fi le; if you can explain
everything that a class does in a few sentences at the top of
a fi le, don’t hesitate to do so.

Chapter 4 //FTW! 65

 Here is an example of ASDoc formatting; more precise stan-
dards and style guides are available on Adobe’s website. This is
taken from a SoundEngine class we will look at in a later chapter:

 /**
 * Plays the sound specifi ed by the name parameter. Checks
for the sound internally fi rst, and then looks for it as an
external fi le.
 * @param name String The name of the linked Sound in the
library, or the URL reference to an external sound.
 * @param offset Number The number of seconds offset the sound
should start.
 * @param loops int The number of times the sound should loop.
Use -1 for infi nite looping.
 * @param transform transform The initial sound transform to
use for the sound.
 * @return SoundChannel The SoundChannel object created by
playing the sound. Can also be retrieved through getChannel
method.
 */
 public function playSound(name:String, offset:Number = 0,
loops:int = 0, transform:SoundTransform = null):SoundChannel

 Note that the comment block is placed just before the method
itself. It starts with a description of the method and then a list
of the parameters it accepts and what it returns. When using an
editor such as FlashDevelop or compiling documentation, the
method itself will be used to defi ne things like the default values
of parameters and specifi c data types.

 The Bottom Line
 It is better to comment some than none at all, so even if you’re

pressed for time, you’ll thank yourself later for having put some-
thing in, even if later on it takes you a minute to remember what
you were thinking.

 PART 6
 Why Does Flash Do That?

 Flash and ActionScript have a number of idiosyncrasies that
can throw even seasoned developers off track. Some of these odd-
ities are instances where the language breaks form with similarly
constructed languages like Java or C#, much to the chagrin of
developers coming to Flash from these languages. Others have to
do with the processing order in which Flash performs commands;
sometimes a bug is simply the result of a misunderstanding

66 Chapter 4 //FTW!

 of this “ order of operations. ” We’ll cover a number of these quirks
in this section.

 Event Flow
 One of the common misunderstandings that I’ve witnessed

with developers fi rst utilizing Flash’s event model is the difference
between DisplayObject-generated events and all other events. As
we discussed earlier, events in ActionScript have three phases: cap-
ture, target, and bubbling. Objects that dispatch events but are not
in the display list (which can include DisplayObjects that have not
been added to the Stage) generate events only at the target phase.
In other words, other objects may listen for these events only by
attaching themselves directly to the dispatching object.

 DisplayObjects that are active somewhere in the display list are
capable of dispatching events that pass through all three phases.
When a DisplayObject that is on the Stage dispatches an event, it
actually originates at the Stage level and progresses through each
subsequent child to effectively tunnel down to the originating
object — this is the capture phase. The event then enters the target
phase, and any listeners attached directly to the DisplayObject
will receive the event. Finally, if the event is set to bubble, it will
reverse its direction back up the same display hierarchy it tra-
versed in the capture phase.

 Frame Scripts
 Before I go any further, I should go ahead and state for the

record that coding on the timeline should be avoided at all costs.
There is basically nothing that you can’t do with classes to con-
trol your DisplayObjects at this point, and forcing your code into
classes imposes better architecture and less sloppy shortcuts that
will later come back to bite you.

 Now , I say “ basically ” because until AS3 (Flash CS3, specifi -
cally) you still had to put a stop() action on the last frame of any
MovieClip you didn’t want to loop. Since switching to all-class
scripting architecture, I found it very frustrating to not be able to
easily remove this last bit of straggling timeline code from my FLA
once and for all. Then I discovered an undocumented method
of MovieClips. It’s called addFrameScript, and it is a complete
mystery to me why Adobe hasn’t documented it or encouraged
its use, because it is a fantastic piece of code. Basically, it allows
you to tell a particular function to run when a certain frame of
a MovieClip is hit. Unlike all the other MovieClip functions, it is
zero based, rather than one based, so you must subtract one from

Chapter 4 //FTW! 67

 the desired frame number to use it correctly. Here is its syntax in
the context of a MovieClip class:
 public function MyMovieClip() {
 addFrameScript(totalFrames-1, stop);
 }

 Now when the clip reaches the last frame, it will call its stop()
method and not loop. Obviously this has further reaching impli-
cations and uses than simply stopping a MovieClip from playing.
In fact, I have come up with a way to use this method to make
up for what I see as a defi ciency in ActionScript with regard to
MovieClips and frame labels. Since early versions of Flash, you
could put string labels on any frame in the timeline and use them
as reference points for navigation. Starting in AS3, Adobe fi nally
introduced the ability to see what label you’re currently on in
a clip (with the currentLabel property) as well as a list of all the
labels in a clip (the currentLabels property). I’ve long thought that
Flash should dispatch an event whenever a frame label is hit so
you could trigger actions based on label markers. With addFrame-
Script , you can! Let’s look at an example.

 Here is an architecture I like to use for my document class in a
Flash fi le. It involves placing labels on the main timeline to denote
sections of a game; they might be things like “ loader, ” “ titleScreen, ”
 “ game, ” “ resultsScreen, ” etc. Figure 4.4 illustrates this arrangement.

 Figure 4.4 For my main timeline, I set up labels denoting each section of the game
experience.

 In my document class, I create constants to match these frame
labels so I can reference them easily and don’t risk misspelling them.
I also import the FrameLabel class, as I will be using it shortly:
 package {
 import fl ash.display.MovieClip;
 import fl ash.display.FrameLabel;

 public class FrameScriptExample extends MovieClip {

 static public const FRAME_LOADER:String = “ loader ” ;
 static public const FRAME_TITLE:String = “ title ” ;
 static public const FRAME_GAME:String = “ game ” ;
 static public const FRAME_RESULTS:String = “ results ” ;

 public function FrameScriptExample() {
 stop();
 }
 }
 }

68 Chapter 4 //FTW!

 When I have all my labels established, I create two functions
that will control my frame events:

 private function enumerateFrameLabels():void {
 for each (var label:FrameLabel in currentLabels)
 addFrameScript(label.frame-1, dispatchFrameEvent);
 }
 private function dispatchFrameEvent():void {
 dispatchEvent(new Event(currentLabel));
 }

 The enumerateFrameLabels method iterates through the list of
FrameLabel objects in the currentLabels array and adds a frame
script to every frame that has a label. The function it adds is
called dispatchFrameEvent , and all it does is generate a new event
with the same name as the frame label. Now every time a frame
label is hit, an event with that label name will be dispatched. By
using events, any number of objects can listen for these frame
events. The rewritten constructor for this class now looks some-
thing more like this:

 public function FrameScriptExample() {
 stop();
 enumerateFrameLabels();
 addEventListener(FRAME_TITLE, setupTitle, false, 0, true);
 }
 protected function setupTitle(e:Event):void {
 //PERFORM TITLE FUNCTIONS
 }

 It is worth noting that only one function can be assigned to a
frame at a time, so any subsequent addFrameScript calls to the
same frame number will replace the existing script. If you’re at
all nervous about using undocumented features in your work,
addFrameScript is a pretty safe bet — it’s what the CS4 integrated
development environment (IDE) uses internally when you place
code on the timeline. Let’s say you put a script on the last frame of
the main timeline that called stop(). When you compile the SWF,
Flash takes each of these frame scripts and converts them into
functions with names like “ frame30 ” to ensure they are unique.
Then, in the constructors for any clips with frame scripts, Flash
calls addFrameScript to attach these functions to their respective
frames. It looks something like this:

 addFrameScript (30, frame30);

 I ’m sure there are many other good applications of this method,
so continue to explore it and let’s collectively push Adobe to sup-
port and document it. If it’s good enough for Flash, it should
be good enough for you. One other minor sticking point is that
very early versions of Flash Player 9 prior to Flash CS3’s release
(specifi cally, 9.0.28 and earlier) do not support addFrameScript.

Chapter 4 //FTW! 69

 The command is ignored entirely. Because of this issue, other
security issues, bug fi xes, and performance improvements, I
recommend you only build for Flash Player 9.0.115 or higher. If
you’re building for Flash Player 10 (which is the default for CS4),
you don’t need to worry about it at all.

 Working with Multiple SWF Files
 At some point, you’ll probably be in the position of using mul-

tiple SWF fi les to support a game. Perhaps you have multiple
game levels, each in its own SWF, or you have externalized all
your audio as a separate fi le. To load external SWF fi les in at run-
time, you’ll need to use a Loader object, which is part of the dis-
play package. The syntax looks like this:

 package {
 import fl ash.display.Loader;
 import fl ash.display.Sprite;
 import fl ash.display.MovieClip;
 import fl ash.events.Event;
 import fl ash.net.URLRequest;
 public class LoaderExample extends Sprite {

 protected var resourceLoader:Loader;
 protected var resources:MovieClip;
 public function LoaderExample() {
 loadResources();
 }

 protected function loadResources():void {
 if (!resourceLoader) resourceLoader = new Loader();
 resourceLoader.load(new URLRequest(“ resources.swf ”));
 resourceLoader.contentLoaderInfo.addEventListener

(Event.COMPLETE, resourcesComplete, false, 0, true);
 }

 protected function resourcesComplete(e:Event):void {
 resources = e.target.content as MovieClip;
 }

 protected function unloadResources():void {
 resourceLoader.unloadAndStop();
 }
 }
 }

 In the loadResources method of this example, a new Loader
object is created (if one doesn’t already exist) and is used to load
a SWF named “ resources.swf. ” A listener is then added to the
Loader’s contentLoaderInfo object, which will dispatch events
about the Loader’s progress. When the load has completed,
the resources variable is assigned to the content of the Loader.
If at some point the data needs to be unloaded, the method

70 Chapter 4 //FTW!

unloadResources can be called to dump the SWF. Developers famil-
iar with AS3 already will note that the new unloadAndStop method
in CS4 is a big improvement over the previous (and still available)
 unload method. It makes sure that all listeners and sounds con-
nected to the loaded content are properly removed and garbage
collected to prevent any of the assets from lingering in memory.

 One thing to note about classes in separate SWFs is that, by
default, every SWF has its own “ sandbox ” to store classes known
as its ApplicationDomain . This is to prevent classes in one SWF
from colliding with those in another, which is helpful if two SWF
fi les have similarly named classes that are actually completely dif-
ferent in their implementation. Most of the time, this is the behav-
ior you will want, as it protects your class integrity and keeps you
from having to think about how any other content may be built.
Occasionally, however, you want to be able to merge a loaded
SWF’s ApplicationDomain with its container. A good example of
this is a SWF that contains nothing but sounds exported in the
library. In order to easily get access to the classes for these sounds,
you would have to rely on a roundabout way of looking them up. If
you know that none of the class names in your loaded SWF fi le will
confl ict with those in the container, you can tell Flash to merge
the two when the SWF is loaded. Using the previous example, the
 loadResources method would have to change:

 protected function loadResources():void {
 if (!resourceLoader) resourceLoader = new Loader();
 var loaderContext:LoaderContext = new LoaderContext(false,
ApplicationDomain.currentDomain);

 resourceLoader.load(new URLRequest(“ resources.swf ”),
loaderContext);

 resourceLoader.contentLoaderInfo.addEventListener
(Event.COMPLETE, resourcesComplete, false, 0, true);

 }

 The new code uses two classes from the system package:
LoaderContext and ApplicationDomain. When you perform a
load, you can specify the context under which the fi le is loaded.
Inside that context, you can determine which ApplicationDomain
the loaded fi le should use. By specifying the current domain, any
class defi nitions in the loaded SWF fi le will be combined with and
accessible to those in the container. In Chapter 15, we’ll look at a
variation on this process when loading a set of assets.

 One point to remember about using Loader objects is that you
 must call unloadAndStop to fully unload any content you want to
get rid of. Simply setting the Loader object to null will only elimi-
nate the reference to it and there is no guarantee that is will be
automatically garbage collected correctly. Fewer things are worse
in Flash than a memory leak that can’t be fi xed because there is
no attainable reference to the offending object.

Chapter 4 //FTW! 71

 Garbage Collection
 The AS3 garbage collection (GC) system, or the mechanism

that removes unused objects from memory, has some peculiari-
ties that are likely to throw off AS2 developers, though they are
likely nothing new to developers from other memory-managed
languages. Ideally, a garbage collector is always keeping track of
which objects are in use and which are not, freeing up as much
memory as possible. In reality, it is not so perfect, but there are
ways to make sure your code conforms to how the GC will work.
First, it’s important to understand in brief how the Flash GC per-
forms its functions.

 The AS3 GC uses two techniques to clean up your objects. The
fi rst is known as reference counting; all the objects in memory
have a number representing how many references there are to
that object. For example, the following code creates three differ-
ent references to a single object:

 var obj1:Object = new Object;
 var obj2:Object = obj1;
 var obj3:Object = obj2;

 Any time the number of references to an object changes, Flash
checks to see if that number is zero. If it is, the object is purged
from memory. In this case, as long as we set obj1, obj2, and obj3
to null , the original object will be deleted. Sounds easy and effec-
tive enough, right? Unfortunately, there are a number of sce-
narios where a parent object may no longer reference its child
objects, but they reference each other instead, as in the following
example:

 var obj1:Object = new Object();
 var obj2:Object = new Object();
 obj1 .otherObject = obj2;
 obj2 .otherObject = obj1;
 obj1 = null;
 obj2 = null;

 In this instance, while we’ve nulled out the references to obj1
and obj2, they now reference each other. As a result, the garbage
collector will not purge them as it does not discriminate between
 what is referencing the objects, only that something is. This brings
us to the second method the GC uses to get rid of unused objects.
It is known as mark sweeping . In this process, Flash creates a tree
hierarchy of how all objects are connected to each other that links
back to what is essentially the root of the SWF. Any objects that
are not connected to the main tree in some way, even if they are
connected to each other, are marked for deletion from memory.

At this point you’re probably thinking, “ Okay, great. Sounds
like Flash has it covered. ” Once again, it is not quite that simple.

72 Chapter 4 //FTW!

The reference counting technique of the GC happens automati-
cally and immediately when the number of references to an
object changes. However, because mark sweeping requires run-
ning the entire length of the object tree in memory, it is a very
intense effect on the system and is only run periodically . In my
experience, this is usually pretty frequently on decent machines,
but it cannot be counted on for split-second accuracy. Don’t
worry, though — there are a few things you can do to help the gar-
bage collector run thoroughly and effectively:

 Be diligent about removing your references to objects
 If you have multiple references to objects in your classes, I

suggest writing a function called cleanUp in classes that con-
tain a lot of references. This function can perform such tasks
as setting references to null and emptying arrays. By helping
the reference counting mechanism of the GC, you’ll make
the entire process easier on Flash and therefore less taxing
on your game.

 Use weakly referenced listeners
 Event listeners are a common place for memory leaks,

because developers add them and then neglect to remove
them. Any object that is dispatching events contains a list of
all the objects listening to those events. Even if the listening
object has all of its external references set to null , it will still
be in this listener list. Luckily, when adding an event listener,
there is an option to use what are known as weak references .
Weak references are not counted as part of the reference
counting mechanism of the GC, so if the only remaining ref-
erences to an object are weak, it will be deleted. Simply set
the fi fth parameter of the addEventListener method to true
to use weak references. I recommend always using them, as
they will save you endless headaches and there is not a sce-
nario I have come across yet where using weak references
had a negative impact.

 Avoid using dynamic objects other than for lists
 As a best practice you should always use statically typed

classes, as opposed to dynamic classes, which allow you
to add new properties and methods at runtime. By forcing
yourself to intentionally declare the variables and object ref-
erences you want to use in your classes, you keep better track
of them. Also, statically typed classes require less memory as
instances because they do not require a lookup table to hold
the dynamically created properties and methods. Dynamic
objects are a common way references to other objects get lost
so that they’re not effectively garbage collected.

Chapter 4 //FTW! 73

 Use the new unloadAndStop method in Flash Player 10
and CS4

 Like I mentioned a brief while before, in the section on
loading external fi les, unless you’re still developing Flash
Player 9 content always use the unloadAndStop method for
getting rid of loaded content. It does a far more effective job
of preparing all the objects in the content for garbage collec-
tion and will save you a lot of time trying to manually purge
all those references yourself.

 The garbage collector in Flash has many nuances and Adobe
will surely continue to improve it with each new version of the
Flash Player, eventually giving developers the ability to delete an
object outright without having to wait for the GC to do it.

 Conclusion
 This chapter has provided an effective rundown on all the

basics you need to know about using AS3 in Flash. This foun-
dation will allow us to explore new classes and features in later
chapters as we begin to build games. If you’re interested in learn-
ing more about the fundamentals of ActionScript, a good place to
start is Adobe’s documentation on Flash. It is very thorough and
covers all of these subjects and more in detail. Many thanks to
Grant Skinner for his blog posts on garbage collection — they were
an invaluable resource.

This page intentionally left blank

75
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 MANAGING YOUR ASSETS/
WORKING WITH GRAPHICS

 While code is certainly a huge part of most games, the assets the
code manipulates (art, sounds, text) are usually equally important.
Unlike most programming languages where such resources reside
as individual fi les separate from the code, every Flash fi le has an
associated library that contains all the assets that will get bundled
into the SWF at compile time. Once you have imported an asset into
your library, you no longer need the external fi le unless you make
updates to it. This allows for easier access by multiple developers,
since someone who needs to work on a Flash fi le only needs the
FLA in most cases. While you could arguably create a SWF that was
all code and loaded in all of its resources at runtime, that is working
against Flash’s nature and creates a lot of extra work for very little
return in almost every situation. Flash can also add extra layers of
compression to assets that cannot be achieved by accessing them
externally, meaning a single SWF containing all of its resources will
be smaller than all of those individual fi les put together. Throughout
the rest of this chapter, I will discuss the different types of assets you
will need to know how to work with when creating games in Flash.

 One point I’ll continue to make throughout this chapter is
about the fi le size of assets. Conventional wisdom in some Flash
circles is that all that matters is the end product — how small the
resulting SWF fi le is. Consequently, I’ve seen many FLA source
fi les hit anywhere from 30 to 50 MB for relatively simple games.
This is problematic for a couple of reasons. One is that, if you’re
using any type of backup or version control system every time, a
new version takes up a considerable chunk of space. Even more
importantly, Flash likes smaller, less memory-hogging FLA fi les
and will be far less prone to locking up or crashing. One simple
step to periodically take during development is to perform a Save

 5

76 Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS

 and Compact operation. As you make changes to assets in Flash
(adding, updating, deleting), it stores a history to allow you to undo
as many of these actions as possible. Over time, these “ undo back-
ups ” can begin to bloat your fi le, storing assets that you deleted
from the library several iterations ago. Save and Compact goes
through the FLA and purges any of this undo data. I’ve seen libra-
ries drop 75% in size just because of a long version history. Note that
if your version control system consists of saving to a new fi le each
time and incrementing the fi le name (not a system I recommend at
all), Flash automatically compacts your fi le when you use Save As.

 A Few Words About Organization
 If you’ve worked in Flash for very long, you’ve probably had the

opportunity to open someone else’s FLA fi le from time to time.
I’ve rarely found two developers who organize their library the
same way. For a while, a popular convention was to sort library
assets by type, so there would be folders called MovieClips,
Buttons, Bitmaps, etc. Some prefer to sort by use, refl ected in
folder structures like those shown in Figure 5.2.

 Figure 5.2 A library organized by use.

 The important thing to remember is that any organization
is better than none, and often the complexity of the project
will dictate the best structure to use. I typically use a hybrid of
the two aforementioned methods. I will keep my visual assets
(MovieClips, Images, Video) sorted by use and then by type inside
their respective folders. I then keep items like sounds and font
symbols organized strictly by type. My reasoning behind this is
that Flash CS4 fi nally introduces the ability to edit the properties
of multiple items of the same type, and having the items physi-
cally near each other in the library makes it easier to select them.

 Figure 5.1 The Save and
Compact option in the File menu
will remove deleted resources from
your FLA fi le and reduce its size .

Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS 77

 Working with Graphics
 We ’re long past the days of Pong; the bar has been raised. With

few exceptions, games are expected to have good-looking graph-
ics and animation that feels natural and smooth, and Flash games
are no different. In this section, I will outline the best formats to
use for graphics in games and use of the timeline for animation.
I won’t discuss creation of artwork, for a couple of reasons. First, I
am not an artist. Second, as Flash games become more and more
sophisticated, it is less likely that one individual will be respon-
sible for both the artwork and code in a single game. If you work
alone or you are interested in designing graphics for Flash games,
I recommend checking out Robert Firebaugh’s Flash Professional
8 Game Graphics . It’s a couple of versions behind now, but it is
still a great resource for learning how to design effi cient artwork
for use inside Flash.

 Flash CS4 supports both vector and raster (bitmap) artwork.
Each has its advantages and disadvantages when it comes to
game development. Vector graphics are resizable without any
quality loss, they usually have a much smaller fi le size than raster
graphics, and they can be manipulated over the timeline to cre-
ate seamless (if rather time-consuming) animations on the level
of professional cartoons. However, vectors can be notoriously
heavy on the CPU in large numbers or when used in large objects.
Vector artwork is usually best created directly inside of Flash,
though it can be done in a tool like Adobe Illustrator. The upside
of the fi rst option is that Flash will automatically optimize vec-
tors as they are drawn to use the least number of points possible.
In a program like Illustrator, where accuracy and pixel-perfect
quality are valued over optimization, art tends to end up with
bulkier vectors that must be cleaned up after they are imported
into Flash. If you are working on a project with all vector artwork,
fewer points translate to faster rendering and lower fi le size.

 Most everyone will be familiar with and has used raster images,
even if all you’ve ever done with them is set your computer’s wall-
paper. They have a few advantages over vectors. First, they offer
photorealism on a level that would not be possible without overly
complex vector shapes. Many different art programs, including
most three-dimensional (3D) software, will render out images,
whereas only a few will generate Flash-compatible vector fi les.
They are also much less intense to render to the screen, as Flash
sees them on the level of complexity of a vector rectangle. They
are not without their drawbacks, unfortunately. Raster images
become exponentially heavy in fi le size as they increase in pixel
size and cannot be resized inside Flash without a certain level of
quality loss. Also, images with transparency are more taxing on
the Flash renderer than ones without.

78 Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS

 At this point, you may be saying, “ So, neither one is a clear win-
ner. Which one should I use? ” Once again, like library organiza-
tion preferences, this is usually dictated by the project. There is no
one right choice that will work across the board; very rarely will
I use all one or the other. That said, I lean more heavily on ras-
ter images than I do vector when it comes to game development.
Many games rely on the ability to render objects to the screen
quickly to maintain a sense of excitement, and with a signifi cant
level of detail vectors become too slow to pull this off. As a general
rule, the art for games I work on is usually about 80% raster, 20%
vector. Characters, backgrounds, particle effects, etc., are all ras-
ter. Menus, in-game displays, and, of course, any text are vector.

 Raster Formats to Use
 The two best raster formats to use in Flash are JPEG and PNG.

JPEGs are great when you don’t need any transparency because
the compression level and quality you can get out of external
programs like Photoshop is better than what Flash will perform
internally. Because of their lack of transparency, they also have a
lower overhead on the Flash renderer. PNGs are the best solution
when you need transparency in your images, but they cost more
in fi le size and in processor power.

 Most projects will be a blend of the two formats. Whenever
possible, it’s a good idea to use a JPEG for any assets that can
function in a rectangular format without any transparency. This
includes:

 ● Game and menu screen backgrounds
 ● Images that are going to be used as a texture in a bitmap fi ll
 ● Art that is going to get masked inside of another shape

 Figure 5.3 The background art for a game, saved as a JPEG fi le.

Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS 79

 ● Overlays that will be used for some type of graphical effect
over the game, like static or interference

 Portable network graphics (PNGs) are the best choice for clean
transparency and are better for the smaller elements in a game,
including:

 ● Characters, especially those that are animated
 ● In-game elements that need to be separated from the

background
 ● User interface elements such as buttons and other irregu-

lar shapes
 ● Any image that has fi ne lines and requires pixel-perfect

accuracy (JPEGs have a tendency to blur or muddy pixel-
fi ne details in an image)

 Techie Note. 8-bit PNGs with an Alpha Channel

 PNGs come in two fl avors — 32-bit (or 16 million colors with a full 8-bit alpha
channel) and 8-bit (256 colors). A seemingly little known fact about Adobe
Fireworks is that it can generate a special type of PNG that has an 8-bit
color channel and an 8-bit alpha channel (sometimes called PNG8 � 8). If
you’re using artwork that has a fairly fl at color palette or that won’t degrade
when the number of colors is reduced, this format is an outstanding option. It
allows you to keep nice clean edges and transparency, thanks to a true alpha
channel, while reducing the fi le size by over half. In fact, this format is often
smaller than the compressed version of a 32-bit PNG inside of Flash, and
the resulting images look better. Hopefully this format will eventually fi nd its
way into Photoshop’s Save for Web feature. Until then, you can always use
Fireworks to batch-process your 32-bit PNGs down to 8.

 Figure 5.4 Character sequence of individual PNG fi les, with Onion Skinning turned on in Flash.

80 Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS

 Figure 5.5 The result of saving a JPEG.

 Figure 5.6 The result of saving a 32-bit PNG.

 Of course these are just guidelines, not hard and fast rules, but
using a combination of formats that take fi le size into account
upfront will save you time in the optimization phase. Another
aspect of dealing with raster images is how Flash will handle them
when compiling the game. Flash has a couple of different options
when it comes to exporting images that can have an impact on
how your game looks. Simply double-click on an image in your

Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS 81

 library to view its properties. You can also select multiple images
at a time (a new feature in CS4) and adjust the properties of all of
them at once (Figure 5.8).

 Figure 5.7 The result of saving an 8-bit PNG from Fireworks.

 Figure 5.8 The Bitmap Properties panel will let you adjust the properties of a specifi c
image or multiple images.

 Compression
 When you import a JPEG fi le that has already been optimized

in another application, Flash will use it “ as is ” by default. PNGs
are a different matter. If the image has 256 colors or less, Flash
will automatically downconvert it to an 8-bit PNG fi le and you get

82 Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS

 instant fi le size savings with no quality loss (also known as lossless
compression). If the image has more than 256 colors, Flash will
apply its own version of JPEG compression when your fi le is com-
piled. The level of this compression can be controlled at the doc-
ument level in the Publish settings (where it defaults to 80%) and
on a per-image basis. For any images that will be still on screen
for any length of time, a setting of 70 to 80 is recommended to
prevent too much degradation. For images that are used in a rapid
sequence, like character animation, I’ve gotten away with a set-
ting as low as 50 without it being noticeable. In fact, at 30 frames
per second, the human eye cannot perceive enough detail, and
the natural blurring effect of JPEG compression will create a nice
sense of motion blur. Never use anything over 90 unless the game
is going to be displayed on an enormous high-resolution display;
you likely won’t be able to tell the difference, and the fi le size will
jump up dramatically.

 Figure 5.9 The Publish settings window allows you to set the default image quality.

 Smoothing
 By default, Flash does not re-render images when they are dis-

torted in any way on the Stage, including skewing, scaling, or
even rotating (at any angle not divisible by 90). This causes a jag-
ged, blocky effect that is very noticeable on any images that are
not moving rapidly. If you have any raster elements in your game
that need to be able to rotate or resize from time to time, consider

Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS 83

 checking the Allow Smoothing box in the Bitmap Properties panel.
While it looks considerably cleaner, this does tax the processor a
little bit more per image, so use it sparingly and consider disabling
it for some images if your game begins to stutter later on in testing.

 Figure 5.10 Bitmap smoothing (on the left) can make a big difference, particularly in
images with fi ne details.

 Deblocking
 A new feature in CS4, enabling deblocking will apply extra some

extra smoothing to improve images that are set to an extremely low
JPEG quality, as in 30 or less. Unless you are using many heavily
compressed images, deblocking is probably not a feature you will
need much.

 External Image Tools
 The artists I work with typically use Adobe Photoshop and Adobe

Fireworks raster game art. They produce very good JPEG com-
pression and very clean PNG fi les. If you’re on a tight budget and
can’t afford (or don’t need all the high-end features of) Photoshop,
Fireworks by itself is a very satisfactory application. As of this writing,
it is $ 300.

 For vector art, I’ve known a number of artists who use the tools
in Flash to great effect; they cost nothing extra and automatically
optimize the vectors as they are created. Fireworks also has a
very nice set of vector tools that export easily into Flash. Over the
years, I’ve also worked with artists who like Adobe Illustrator, but
I fi nd it to be overkill for the level of detail needed in most games,
and not all the effects (such as complex blends and gradients) will
translate well to Flash.

84 Chapter 5 MANAGING YOUR ASSETS/WORKING WITH GRAPHICS

 Key Points to Remember
 It ’s very easy when working with a lot of images in a game for

them to get out of hand quickly, both in disorganization and fi le
size. Remember:

 ● Be vigilant about keeping tabs on your images throughout
the development process.

 ● Keep series of images organized in folders in your library.
 ● Keep images organized in the fi le system so you can do

 “ Updates ” in Flash rather than having to import them all
over again if anything changes.

 ● Err on the side of smaller, both in dimension and fi le size,
particularly with full-frame-rate animations.

 Better to be a stickler and optimize upfront than to scramble to
scrape fi le size off at the 11th hour by lowering the JPEG compres-
sion on everything until your game is one big blocky mess. In the
end, your perseverance will pay off in peace of mind.

85
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 MAKE IT MOVE: ACTIONSCRIPT
ANIMATION

 No matter how good the artwork in a game looks, it can fall com-
pletely fl at if it is unconvincingly animated. Players respond to
motion and animation in a game, and it can mean the difference
between a successful suspension of disbelief and a boring experi-
ence. Luckily for Flash game developers, animation is at the core
of Flash’s long history. It is what the product originally started out
doing and has only continued to improve over the years. Flash
CS4 introduces a number of new features that make the timeline
amazingly more powerful to work with and which cut down on the
time spent building animations. Some of these features include an
entirely new way of assigning tweens to objects on the Stage, com-
plete motion control over every property of a tween, and inverse
kinematics for doing convincing joint-based character animation.

 However , I should go ahead and get a disclaimer out of the way.
We will not be covering standard Flash timeline animation in this
chapter. I made this decision for a few reasons:

 ● If you’re coming to this book from a Flash background, it’s
very likely you are already familiar with many aspects of
Flash animation and will be able to pick up the new fea-
tures quickly on your own.

 ● If you’re coming to this book from another programming
or game development background, I fi nd discussions of
timeline animation make people from these disciplines
glaze over or hang their heads.

 ● In game development, timeline animation use is typically
greatly reduced, and scripted animation is far more common.

 The last of these points is really the most important. In game
development, you want to have as much control as possible over
the animations you use in your game, and the best way to achieve

 6

86 Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION

 this control is by creating the animations through ActionScript.
That said, I still regularly use the timeline for things like title and
menu screens, cutscenes between gameplay segments, and other
incidental, non-game-related animation. If you are interested in
learning more about timeline animation in Flash, I will have links
to excellent learning resources on fl ashgamebook.com.

 A Little Terminology
 So we’re all on the same page (literally and fi guratively) over

the course of this chapter, here are a handful of terms that will be
used shortly, what they mean, and how they are relevant.

 Easing
 In real life, most motion does not occur in a rigid fashion. Unless

you are a robot underneath, for example, your movement is not com-
pletely linear and always at the same rate of speed. When starting to
walk from a stationary position, you gradually speed up and then
slow down when you come to a stop again. In animation, this gradual
acceleration and deceleration constitute the concept known as eas-
ing . Easing is a critical component in making animations look con-
vincing and real. If a ball rolls across a surface, it shouldn’t move at a
fi xed speed and then come to an abrupt stop. The friction between
the ball and the surface causes it to come to a stop progressively. In
scripted animation, easing is usually defi ned by an equation (in the
case of Flash, a function) that determines how an animation plays
out over a given time based on a starting and an ending point. It can
also be used to create effects such as elasticity and bounciness.

 Sequencing
 Sequencing refers to the stacking of animations (usually of

different objects) so they occur in a particular order rather than
simultaneously. This concept becomes especially important
when timing events within a game; when a player makes a move,
you might want a short pause before an animation starts playing
or you might have a series of animations that you want to play
when a player does something.

 To Tween or Not to Tween? Is That a
Question?

 When creating animation in a game, there are generally two
methods to use. The fi rst approach to creating scripted animation
is to move objects based on the game’s mechanic. An example of

Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION 87

 this would a top-down scrolling shooting game where the speeds,
positions, and orientations of the background, player, and ene-
mies are all determined by engine calculations and updated
frame by frame. Another example would be any kind of physics
simulation, which we’ll look at in depth in Chapter 10.

 The second method is to create what is commonly known as a
 tween . A tween is a set of instructions that change the properties
of an object over time. For example, if I move a circle from (0, 0) to
(10, 10) in two seconds, I have tweened that object’s x and y proper-
ties. Since version 7, Flash has included some basic classes for cre-
ating tweens with code. These classes have changed very little all
the way through version 10 where we are today. However, a number
of Flash users in the community have taken it upon themselves to
write elaborate tweening libraries that support things such as mov-
ing multiple objects in sync with each other; dispatching events
when animations begin, change, and end; and sequencing entire
virtual timelines of animation. Tweens are less useful when creat-
ing simulation-driven games but are extraordinarily helpful when
you simply need to move or manipulate components of a game or
create visual effects in a style you might have traditionally used the
timeline for in earlier versions of Flash. While I’ve used a number
of tweening libraries and each has its own merits, my favorite as
of this writing is TweenMax by Jack Doyle of greensock.com. Jack
goes to great lengths to incorporate feedback from the community
and continues to update and improve the library on his own time.
It is the tween engine we’ll use in some upcoming examples, and I
highly recommend downloading the latest version from his site and
donating to the project if you end up using it in your own work.

 A Simple Scripted Shooter
 In the following example, we will look at a simple animated

game mechanic involving a top-down, scrolling shooter. This
game will employ a form of scripted animation to convey a sense
of motion to the player. You can follow this example using the
SimpleShooter.fl a fi le in the Chapter 6 examples folder on the
website. When exported, this example will create an environment
with a two-tiered background that scrolls at different rates and a
ship that moves with the mouse cursor and fi res projectiles when
the mouse button is clicked. There are just two classes for this
example: SimpleShooter.as and Projectile.as. We’ll look at the lat-
ter one fi rst, since it’s very simple.

 The Projectile Class
 The class controlling the projectiles fi red in the game only has

one main property: the projectile’s speed. Arguably, for this example,

88 Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION

 we could have stored the speed in the main game class to keep
it in a single fi le. However, if a more advanced feature set were
added to this game, it would require classes to control each of the
objects in play, so going ahead and creating a sort of “ stub ” class
gets some work out of the way. If we added enemies to this game
that also fi red projectiles, for example, we’d want those projectiles
to have a different speed than those fi red by the player. It also gets
us into the practice of creating classes to control the feature sets of
our game objects, even when they’re not 100% necessary.

 package {
 import fl ash.display.Sprite;
 public class Projectile extends Sprite {
 protected var _speed:Number;
 public function Projectile(speed:Number = 0) {
 this.speed = speed;
 }
 public function get speed():Number {
 return _speed;
 }
 public function set speed(value:Number):void {
 _speed = value;
 }
 }
 }

 Like I said — simple . The speed variable will be the number of
pixels the projectile will move on every frame cycle.

 The SimpleShooter Class
 This class handles all the logic behind the gameplay. It will con-

trol the player’s position, the scrolling background, and creation,
movement, and removal of projectiles. The background actually
consists of two separate objects we’re calling the foreground and
 background . We will move these two objects at different speeds to
achieve a feeling of depth and sense of motion known as parallax
scrolling .

 public class SimpleShooter extends Sprite {
 public var background:Sprite, foreground:Sprite;
 public var player:Sprite;
 protected var _projectileList:Vector. < Projectile > ;
 protected var _speed:Number = 15;
 protected var _stageWidth:int, _stageHeight:int;
 protected var _projectileSpeed:Number = 20;
 public function SimpleShooter() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage, false, 0,
 true);
 addEventListener(Event.ENTER_FRAME, frameScript, false, 0, true);
 _projectileList = new Vector. < Projectile > ();
 }

Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION 89

 As you can see, there are three public variables representing
the background, foreground, and player Sprites. Internally, it also
stores a list of all active projectiles, the speed at which the fore-
ground should move, the speed of any projectiles upon creation,
and references to the Stage’s width and height.

 protected function addedToStage(e:Event):void {
 _stageWidth = stage.stageWidth;
 _stageHeight = stage.stageHeight;
 addEventListener(MouseEvent.MOUSE_DOWN, createProjectile,
false, 0, true);

 }
 protected function frameScript(e:Event):void {
 movePlayer();
 moveProjectiles();
 moveForeground();
 moveBackground();
 }

 Once added to the Stage, the game stores information about
the Stage and adds a listener for when the mouse button is
pressed that will call a method named createProjectile . We will
look at this method shortly. The function that runs every frame,
 frameScript , does four things. It moves the player, moves all of the
projectiles, and updates the position of both the foreground and
background tiles.

 protected function movePlayer():void {
 player.x = mouseX;
 player.y = mouseY;
 if (mouseX > 0 & & mouseX < _stageWidth & & mouseY > 0 & & mousey < _
stageHeight) {
 Mouse.hide();
 } else Mouse.show();
 }
 protected function moveProjectiles():void {
 for each (var projectile:Projectile in _projectileList) {
 projectile.x + = projectile.speed;
 if (projectile.x-projectile.width > _stageWidth) {
 removeProjectile(projectile);
 }
 }
 }

 In the movePlayer function, the player’s x and y position is
updated to match that of the mouse. In addition, we check to
make sure the mouse cursor is within the bounds of the stage. If
it is, we hide the cursor so it does not cover up the player; other-
wise, we show it. The moveProjectiles method iterates through the
list of projectiles and updates each according to its speed. If the
projectile has moved too far off the screen, it is removed.

 protected function moveForeground():void {
 foreground.x - = _speed;

90 Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION

 var right:int = foreground.getRect(this).right;
 if (right < = _stageWidth) {
 foreground.x = right-_stageWidth;
 }
 }
 protected function moveBackground():void {
 background.x - = _speed/3;
 var right:int = background.getRect(this).right;
 if (right < = _stageWidth) {
 background.x = right-_stageWidth;
 }
 }

 These two functions are almost identical. The only real dif-
ference is that the background moves at 1/3 the rate of the fore-
ground. This will give the impression that the background is
much farther away from the player.

 protected function createProjectile(e:MouseEvent):void {
 var projectile:Projectile = new
Projectile(_projectileSpeed);
 projectile.x = mouseX;
 projectile.y = mouseY;
 _projectileList.push(projectile);
 addChildAt(projectile, getChildIndex(player));
 }
 protected function removeProjectile(projectile:Projectile):void {
 if (projectile.parent = = this) removeChild(projectile);
 _projectileList.splice(_projectileList.
indexOf(projectile),1);
 }

 The last two functions in this class control the creation and
removal of projectiles. The createProjectile method is called when
the mouse is pressed. It generates a new Projectile object, moves
it to the mouse’s position, adds it to the vector list, and places it
on the Stage underneath the player. In removeProjectile , we sim-
ply pass any projectile instance as a parameter and it is removed
from the stage and spliced from the list.

 When you run this example, you can see that the animation
behind it is very basic but effective. It conveys a continual sense
of motion and gives the impression that we’re traveling very
quickly. It is also a good base upon which to add components
such as enemies animating in the same direction as the fore-
ground and background. In the next example, we will look at a
very different kind of game where tweening is a more effective
method of animation.

 Memory: Tweening Animation
 This next example is a simple memory game. There are six pairs

of matching cards that have a gray back and one of six different

Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION 91

 colors on the front. The player clicks any two cards to fl ip them
over; if they match, they stay face up. If they do not match,
they are fl ipped back over. In this instance, the game mechanic
involves no motion by default, so we’ll need to add anima-
tion to liven up the experience. This is where a tweening library
like TweenMax comes in. We’ll use TweenMax, combined with
the new 3D DisplayObject properties, to make the cards look
like they’re being fl ipped over. Like the last example, this game
has two classes that control its functionality. The fi les can be
found in the Chapter 6 examples folder; the main fi le is Memory
.fl a and the two class fi les are Memory.as and MemoryCard
.as. If you open the FLA fi le, you will see 12 instances of the
MemoryCard class arranged on the Stage. We’ll look at this
fi le fi rst.

 The MemoryCard Class
 Each MemoryCard object is a MovieClip derivative that con-

tains the face-down state on the fi rst frame and all the other faces
on subsequent frames. Every card needs to know what its value is
so it can display the correct frame and also so the game can com-
pare any two cards to determine a match. The card numbers start
at one and go up, in this case to six.

 package {
 import fl ash.display.MovieClip;
 public class MemoryCard extends MovieClip {
 protected var _cardNumber:int;
 public function MemoryCard() {
 stop();
 }
 public function get cardNumber():int {
 return _cardNumber;
 }
 public function set cardNumber(value:int):void {
 _cardNumber = value;
 }
 public function show():void {
 gotoAndStop(_cardNumber + 1);
 }
 public function hide():void {
 gotoAndStop(1);
 }
 }
 }

 Once the card has an assigned cardNumber , the show and hide
methods are the two main functions in play. The hide method
returns the card to its fi rst frame, and the show method jumps to
its respective cardNumber plus one. The rest of the functionality
for this game is in the Memory class.

92 Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION

 The Memory Class
 package {
 import fl ash.display.Sprite;
 import fl ash.events.Event;
 import fl ash.events.MouseEvent;
 import gs.TweenMax;
 import gs.easing.*;
 public class Memory extends Sprite {

 Because we’re making use of the TweenMax classes here, we
need to be sure to import them for our use. In this example, we
import the main class, TweenMax, and the entire easing equation
set. We won’t use every equation, but it’s helpful to have them all
available so we can select just the right look and feel.
 protected var _cardList:Vector. < MemoryCard > ;
 protected var _selectedCards:Vector. < MemoryCard > ;
 public function Memory() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage, false,
 0, true);
 }
 protected function addedToStage(e:Event):void {
 _cardList = new Vector. < MemoryCard > ();
 _selectedCards = new Vector. < MemoryCard > (2);
 for (var i:int = 0; i < numChildren; i + +) {
 if (getChildAt(i) is MemoryCard) {
 _cardList.push(getChildAt(i) as MemoryCard);
 }
 }
 shuffl eCards();
 activateCards();
 }

 When the class is instantiated, it creates a list of all the cards
on the Stage and stores them in a vector. It also creates another
vector of length 2 that will store up to two cards that have been
clicked. The game then shuffl es and activates the cards, which we
will look at next.
 protected function shuffl eCards():void {
 var shuffl edList:Vector. < MemoryCard > = new Vector.
 < MemoryCard > ();

 while (_cardList.length > 0) {
 var rand:int = Math.round(Math.random()*(_cardList.length-1));
 var index:int = shuffl edList.push(_cardList[rand])-1;
 _cardList[rand].cardNumber = Math.fl oor(index/2) + 1;
 _cardList.splice(rand, 1);
 }
 _cardList = shuffl edList;
 }
 protected function activateCards():void {
 for each (var card:MemoryCard in _cardList) {
 card.addEventListener(MouseEvent.CLICK, selectCard, false, 0,

true);
 card.buttonMode = true;
 }

Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION 93

 }
 protected function deactivateCards():void {
 for each (var card:MemoryCard in _cardList) {
 card.removeEventListener(MouseEvent.CLICK, selectCard);
 card.buttonMode = false;
 }
 }

 The shuffl edCards method does very much what you would
expect; it creates a new list having randomly pulled from the orig-
inal list. The two activation methods enable and disable mouse
input, respectively. This is so the game can manage user input
more easily and prevent impatient clicking from breaking the
game logic.

 protected function selectCard(e:MouseEvent):void {
 deactivateCards();
 if (_selectedCards[0] = = null) { //NO CARD SELECTED
 _selectedCards[0] = e.target as MemoryCard;
 fl ipCard(_selectedCards[0]);
 } else if (_selectedCards[0] = = e.target) { //SAME CARD SELECTED
 fl ipCard(_selectedCards[0], false);
 _selectedCards[0] = null;
 activateCards();
 } else { //NEW CARD SELECTED
 _selectedCards[1] = e.target as MemoryCard;
 fl ipCard(e.target as MemoryCard);
 }
 }
 protected function fl ipCard(card:MemoryCard, show:Boolean = true):
void {
 if (show) {
 TweenMax.to(card, .5, { onComplete:card.show, rotationY:90,
 ease:Back.easeIn });
 TweenMax.to(card, .4, { onComplete:checkCards, rotationY:0,
 ease:Quad.easeOut, delay:.5 });
 } else {
 TweenMax.to(card, .4, { onComplete:card.hide, rotationX:90,
 ease:Quad.easeIn });
 TweenMax.to(card, .5, { rotationX:0, ease:Bounce.easeOut,
 delay:.4 });
 }
 }

 When a card is clicked, the selectCard method is called. If no
cards are selected, the clicked card becomes the fi rst of a com-
parison pair. If the same card is selected again, it is fl ipped back
over. Finally, if a second card is clicked, it is added to the pair
and fl ipped. The fl ipCard method is the fi rst place we use any
TweenMax functionality. By default, this function will show the
card face; if the second parameter is false, it will hide the card
again. The most basic TweenMax syntax involves the two static
methods to and from . The to method creates a TweenMax object
that will be automatically disposed of when the tween fi nishes.

94 Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION

 The fi rst parameter is the object that you want to tween, and the
second parameter is the amount of time you want it to take in
seconds. The fi nal parameter is an object containing all the prop-
erties you want the tween to change, as well as information about
which easing equation to use and what function to call when the
tween is fi nished. TweenMax also supports a full event listener
model, but it’s a little overkill in this very simple instance.

 When a card is fl ipped to be shown, the game fi rst animates its
 rotationY property to appear to fl ip horizontally. Note that the eas-
ing method for this fi rst tween is part of the Back class. The card
will appear to turn the opposite direction for a brief moment
before snapping toward its intended direction. When this tween
is complete, it calls the card’s show method and begins a tween
restoring it to its original state. Once this second tween is com-
plete, the checkCard method is called, which we will examine next.
If the card is being hidden, the tween animates the card’s rotationX
property to fl ip the card vertically. When the card fi nally returns
to its hidden state, the tween animates it using the Bounce easing
class. This will give the affect of the card hitting a rubber surface.

 protected function checkCards():void {
 if (!_selectedCards[1]) {
 activateCards();
 } else {
 if (_selectedCards[0].cardNumber = = _selectedCards[1].

cardNumber) {
 _cardList.splice(_cardList.indexOf(_selectedCards[0]),1);
 _cardList.splice(_cardList.indexOf(_selectedCards[1]),1);
 TweenMax.to(_selectedCards[0], 1, { rotationZ:180, ease:

Elastic.easeout });
 TweenMax.to(_selectedCards[1], 1, { rotationZ:-180, ease:

Elastic.easeout });
 } else {
 fl ipCard(_selectedCards[0], false);
 fl ipCard(_selectedCards[1], false);
 }
 _selectedCards[0] = null;
 _selectedCards[1] = null;
 activateCards();
 }
 if (!_cardList.length) {
 trace(“ WON GAME ”);
 }
 }

 The fi nal method in the Memory class is checkCards . It looks
at the _selectedCards list and checks to see if they have the same
card number. If the cards are not a match, it fl ips them back over.
If they are a match, they are removed from the main card list and
have a fi nal tween run on them. This tween uses Elastic easing to
spin the cards with a rubber-band-like motion. Once the entire
card list vector is empty, the game has been won.

Chapter 6 MAKE IT MOVE: ACTIONSCRIPT ANIMATION 95

 Obviously , the tweens I chose to use here are largely arbi-
trary. One of the great things about TweenMax is how easy it is
to change values to experiment with different equations and
timing. We are also not limited to simple position, rotation, and
scale tweens. TweenMax has support for color and fi lter anima-
tion effects as well, so you can really go wild experimenting, and
the syntax is still very straightforward. Feel free to explore the full
library with this game example.

 Summary
 However you ultimately choose to execute animation in your

game, make sure you consider how it affects gameplay and what is
most appropriate for the subject matter. A game that is intended
for older adults or those who have vision diffi culties should have
more subtle, smoother animation so as not to become distract-
ing. On the other hand, a game intended for most kids can’t really
ever have enough animation, and the wackier the animation the
better! Remember, the wrong kind of animation is almost as bad
as not having any at all, because it breaks the tone you’re trying to
set. Just keep your theme in mind and tween away!

This page intentionally left blank

97
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 TURN IT UP TO 11: WORKING
WITH AUDIO

 Sound is the most sorely overlooked component in the world
of Flash games. Because it can’t be seen, it’s very often tacked on
at the end of a project when someone realizes “ this game really
needs sound. ” It can mean the difference between a completely
fl at experience and a very rich one. Most of the best Flash games
I’ve played had excellent sound design. It’s not just that they
used sound effects or music, it’s that they paid attention to how
the sounds blended together in the fi nal mix. In this chapter, I’ll
outline the best formats to use for audio in games and different
approaches to controlling sound within a game.

 Formats to Use
 I ’ve heard many schools of thought from different developers

on what formats they prefer. Some like nothing but WAV or AIFF
fi les, both uncompressed formats. Others prefer MP3s that have
already been compressed and are ready for export. The source
format for audio doesn’t matter quite as much as it does for
graphics, because audio is almost always re-encoded when Flash
exports a SWF. The export settings, which I will outline shortly,
become very important at this point, because they will determine
how the audio ultimately sounds in a game. Much like graphic
formats, I fi nd that a blend of the two types based on how they’re
being used is the best way to make format decisions.

 For sound effects, which I categorize as sounds that are event
triggered (like a punch or an explosion) and last no more than a

 7

98 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 few seconds, I prefer WAV fi les that have been saved with the fol-
lowing settings from a sound editor:

 ● Bit depth, 16
 ● Sample rate, 22 kHz
 ● Channels, mono

 This combination keeps the fi le size of each sound effect down
but also provides enough fl exibility and quality for anyone but
the most attentive audiophile.

 For music or ambient sound (background sounds that provide
atmosphere), I prefer MP3 fi les. There are a couple of reasons for
this. First, music tracks for games should be fairly long (one min-
ute or more) so as not to get too repetitive, and long sounds begin
to create very large fi les. A one-minute music track at the settings
I described above for sound effects would be 2.5 MB. This doesn’t
seem like very much in this day and age, but consider if you had
multiple music tracks and they started to get longer than one min-
ute. This would add up pretty quickly and become cumbersome to
manage and taxing on Flash’s memory footprint. I’ve found that the
following settings for MP3 fi les yield good-sounding music tracks:

 ● Constant bit rate (Flash doesn’t like variable bit rate)
 ● Bit rate of 64 kbps

 Depending on how prominent the music is in a game, a higher
quality setting might be more appropriate. The same audio that
would have been 2.5 MB as a WAV is 480 k — less than 1/5 the size.

 Voice -over audio is a case where the context should determine
the format. A computer voice speaking the name of a button
when the user rolls over it is akin to a sound effect, so treat it like
one. Narration, or any extended dialogue, makes more sense to
treat like music given its length.

 Export Settings to Use
 In the early days of Flash, when keeping SWF fi le size low was

overwhelmingly important, developers got used to setting all
their sounds to use the lowest possible quality. All the sounds
were muddy and often indistinct, but no one seemed to care
because everyone was doing it. Now, with ever-increasing audio
and visual fi delity in games (both commercial and on the web),
the lowest common denominator won’t usually cut it. Let’s exam-
ine the Sound Properties window for a clip inside an FLA.

 In this case, I have opened a fi le that was imported as an MP3.
Flash automatically chose MP3 compression as the best option to
use and selected an option only available to MP3s: use imported
MP3 quality. This is a great option and means that not only will
the sound not experience any further quality loss, but the SWF
will also export faster than if Flash had to recompress it.

 You may be thinking at this point that it would simply make
sense to use MP3 compression for every sound effect in a game

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 99

 and forego WAV fi les altogether. The problem with this approach is
that it is taxing on the Flash Player to start the process of playing
an MP3 fi le because it must be uncompressed in real time. A music
track that only loops every one to two minutes isn’t noticeable, but
if you have many sound effects occurring in rapid succession this
can bog down the processor and hurt the game’s performance.
This is where a different form of compression comes in very handy.

 Figure 7.2 For sound effects, ADPCM is the best option for compression.

 Figure 7.1 The Sound Properties window allows you to set the export settings for each
individual sound in your library.

100 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 Adaptive Differential Pulse Code Modulation (ADPCM) is a lower
level of compression and sounds much closer to the source audio
than an MP3. As you can see from the screenshot in Figure 7.2, a
one-second sound fi le that was 44 k in size becomes just 11 k using
a sample rate of 22 kHz and a bit depth of 4. Not only is this very
small, but it will also cause far less overhead in the Flash Player.

 There is one other setting that is useful specifi cally for voice-
over sounds: speech . It has no options to set other than a sample
rate (22 kHz is usually fi ne), and is a special variant of MP3 com-
pression designed by Adobe to work best with a human voice. It
also exports relatively quickly and doesn’t seem to carry quite the
overhead of a regular MP3.

 If you only have a few sounds in your game, or you know most
of your sounds are of the same type and will use the same form of
compression, you can leave the individual sound properties set
to Default and change them globally in the Publish Settings win-
dow. You’ll be most interested in the Audio Event settings; Audio
Stream isn’t commonly used within games (more on this later).

 Figure 7.3 You can set the audio quality for all your sounds that don’t use custom
settings within the Publish Settings window.

 Techie Note. Obsessing Over Sound Quality

 I tend to like to tweak the sound properties throughout the course of a proj-
ect. Sometimes a compressed sound will be noticeably garbled or distorted
when played by itself but in the context of all the other sounds it works fi ne.
The opposite is also sometimes true. I’ve often found that for short sound
effects that exist within a specifi c frequency range (beeps, clicks, etc.), you
can even get away with lowering the bit depth to 3 without a noticeable dif-
ference and eke out a few extra kilobytes. Your mileage may vary.

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 101

 Using External Files
 Flash isn’t limited to playing sounds that are embedded within

the FLA. External MP3 fi les can be loaded in and played at run-
time. While this feature doesn’t really make sense for individual
sound effects, music or other long sounds can work very well
this way. The SWF isn’t loaded down with the extra fi le size of the
audio and can stream it in over time once the rest of the game
is loaded. Because you don’t have to worry about how it impacts
your initial load, it also makes increasing the quality (and there-
fore the fi le size) of the sound less of a concern. Below is a simple
bit of ActionScript that loads in an external sound:

 var sound:Sound = new Sound(new URLRequest(“ mySound.mp3 ”));
 sound .play();

 The one main drawback to this method is that it exposes your
MP3 fi le to anyone with an activity viewer in their browser. While
you can copyright any assets of your game to prevent others from
using them commercially, it does not prevent someone from
stealing the individual fi les.

 Tools for Working with Sounds
 Probably the best choice for working with sound in Flash is

Adobe’s SoundBooth. It is cross-platform and, as of CS4, it sup-
ports multiple tracks for doing more complex mixing. It is reason-
ably priced and integrates nicely with Flash. Sony’s SoundForge is
another excellent application, but it is pricier and Windows only. If
you are budget strapped (or on a Mac), HairerSoft’s Amadeus Pro
and Freeverse’s Sound Studio are great options. Audacity is a free,
cross-platform, open-source editor with a number of options, but
if you need to do any level of sound manipulation greater than
cropping and normalizing, it’s really worth the money to spring
for a higher end program. Links to the apps just mentioned are
available on this book’s website, fl ashgamebook.com.

 Scripting Sounds
 Sounds are handled differently from all other media in Flash

because they have no visual representation. There are two ways
you can add sound to your game: through script and by placing
sounds directly on the timeline. This is the case with most ele-
ments in Flash, except that when you add a Button to the Stage,
for example, you can also access it via script. The same is not
true of sounds. A sound on the timeline is not accessible from
ActionScript and therefore cannot be controlled. This forces devel-
opers to carefully choose how they are going to handle sounds.

102 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 At fi rst, the obvious choice would be to always play sounds
through script, as it provides the most fl exibility and control, and
for games this is almost always the case. The exception comes, how-
ever, when working with some animation. If a game has any seg-
ments that consist of long sequences of animation, like cutscenes,
it makes more sense to play any accompanying sound effects on
the timeline. This helps during sequencing to line up music or
sound effects with the animation and it’s also just plain easier.

 Figure 7.4 When creating long sequences of animation, it makes sense to use sound
effects played via the timeline.

 The reason it’s all right to use timeline sound effects this way
is because sequences like this are linear and not interactive. The
sounds are not likely to get stuck in a loop or linger around in
memory because they weren’t disposed of properly.

 The rest of the time, scripting is the best way to control sounds.
Because sounds don’t need to adhere to the hierarchical structure
of display objects, the best strategy is to create a generic sound
controller that can play any type of sound and control its basic
properties from anywhere in the game. To create this sound con-
troller, we’ll dive into some ActionScript.

 Understanding the Sound Classes
 Scripting sounds has gotten slightly more complicated in AS3

than it was in AS2. As with many aspects of AS3, the increased
complexity is matched by increased fl exibility, but it can ini-
tially be confusing. Objects of the Sound class are really just con-
tainers for the actual sound data. When played, they generate a
 SoundChannel object and any subsequent commands should be
issued to this channel. As a result, you have to keep track of mul-
tiple objects to have any level of control over a sound you trigger.

 Another way in which sounds are handled differently is that
adjustable properties of sounds (such as volume and panning) are
no longer individually assignable components. They are handled
through a new class known as the SoundTransform . To set the vol-
ume and pan of a sound, you change its channel’s SoundTransform
object. The following code starts a sound playing and then creates
a transform at 100% volume (1) and centered pan (0):

 var soundChannel:SoundChannel = mySound.play();
 soundChannel .soundTransform = new SoundTransform(1, 0);

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 103

 The SoundEngine Class
 We ’ll create a class called SoundEngine that will manage play-

ing all the sounds we might need in a game and take care of
storing all the pertinent objects. It will also provide us with easy
methods to call for setting volume and pan without having to
create new transforms manually. One other great feature it will
afford us is the ability to call either internal sounds (found in the
library) or external sound fi les. It will follow what is known as a
Singleton design pattern, which you will learn more about in
Chapter 10. Suffi ce it to say that there will only be one instance
of the SoundEngine and it will be accessible from anywhere. This
will make playing sounds as simple as a line or two of code.

 There are two class fi les we’ll need to establish to create this
engine. The fi rst is the engine itself, SoundEngine.as. Within this
fi le will be the publicly exposed SoundEngine class, as well as an
internal “ helper ” class called SoundEngineObject. This object
will store information about each individual sound as it is cre-
ated to keep track of them. Because there is no reason to expose
this object outside the engine, we include it in the same fi le as the
engine and Flash will automatically assume it is an internal class.
We’ll cover more about this class in a moment. The other fi le is
a special type of event, SoundEngineEvent.as. This is the type of
object the SoundEngine will dispatch when certain events occur
within the engine, such as a sound reaching its end or an error in
playing or loading a sound.

 Here ’s a quick rundown of the functionality this class will
contain:

 ● Start sounds, both internal and external.
 ● Stop sounds.
 ● Pause/resume sounds.
 ● Mute/unmute sounds.
 ● Set and retrieve the volume of sounds.
 ● Set and retrieve the pan of sounds.
 ● Set and retrieve the entire active SoundTransform of

sounds.
 ● Retrieve the SoundChannel object that an active sound is

using.
 ● Add listeners that will be notifi ed of events within the

SoundEngine.
 ● Retrieve the current status of a sound, such as whether or

not it is playing, paused, or muted.

 All of this information can currently be retrieved from sounds,
albeit with several lines of code. Our goal is to simplify this pro-
cess and not have to rewrite this code every time we want to play
a sound.

104 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 We ’ll begin in the SoundEngine.as fi le and set up the class defi -
nitions we’ll be using:

 package {
 import fl ash.events.EventDispatcher;
 import fl ash.events.IOErrorEvent;
 import fl ash.media.SoundChannel;
 import fl ash.media.SoundTransform;
 import fl ash.media.Sound;
 import fl ash.net.URLRequest;
 import fl ash.utils.getDefi nitionByName;

 public class SoundEngine extends EventDispatcher {

 }
 }

 import fl ash.events.Event;
 import fl ash.events.EventDispatcher;
 import fl ash.media.Sound;
 import fl ash.media.SoundChannel;
 import fl ash.media.SoundTransform;
 internal class SoundEngineObject extends EventDispatcher {

 }

 Now the two classes we’ll be using in this fi le have been defi ned
in their most basic format. We’ll need access to parts of the events
package to be able to dispatch events, as well as the media pack-
age, where all the sound-related classes are stored. Finally, we’ll
need the URLRequest class to load external fi les and the getDefi -
nitionByName method to look up sounds in the library. Note that
we have to do all new imports for any classes we want to use inter-
nally, even if we already imported them in the package above.

 Inside the SoundEngine class, we’ll add some basic properties
and the constructor for the class:

 protected var _soundList:Object;
 protected var _allMuted:Boolean = false;
 static private var _instance:SoundEngine;

 public function SoundEngine(validator:SoundEngineSingleton) {
 if (_instance) throw new Error(“ SoundEngine is a Singleton
class. Use getInstance() to retrieve the existing instance. ”);
 _soundList = new Object();
 }

 static public function getInstance():SoundEngine {
 if (!_instance) _instance = new SoundEngine(new
SoundEngineSingleton());
 return _instance;
 }

 The top three lines are variable declarations for the properties
we are going store in the engine. The _soundList property will
be used to keep track of all the SoundEngineObjects the engine
creates. The _allMuted property will help us determine if the
engine is currently muted so any new sounds played will be muted
as well. Finally, the _instance property is static, meaning there is

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 105

 only ever one instance of it created. It will be used to store the one
SoundEngine object that gets created so we can always access it.

 The constructor of a Singleton should technically be private so
nothing outside the class can instantiate it; however, ActionScript
does not support private constructors, so we have to use a work-
around, which I will discuss momentarily. First, let’s look at the
getInstance method. It is static, so it will be accessible from any-
where as SoundEngine.getInstance(). If an instance of the engine
has not yet been created, it stores a new one in the _instance
property I mentioned earlier. It then simply returns the instance it
has created. You probably noticed that both methods make use of
a class called SoundEngineSingleton. This is an empty class that
we will defi ne internally to prevent any other class outside of the
engine from creating a new one. Without access to this internal
class, only the SoundEngine is capable of creating itself. We will
accomplish this with one additional line at the bottom of the fi le:

 internal class SoundEngineSingleton { }

 That ’s it. Now anyone who uses the class has only one way of get-
ting to the SoundEngine and is prevented from accidentally break-
ing some of its functionality or creating more than one engine.
Think of it as the key to the engine; without it, the engine won’t start.

 Now that we’ve defi ned the basic properties of the engine and
established a way to create and access it, we should jump down to
the SoundEngineObject class to defi ne exactly what each object
will do when created:

 public var name:String;
 public var sound:Sound;
 public var channel:SoundChannel;

 protected var _transform:SoundTransform;
 protected var _playing:Boolean = false;
 protected var _muted:Boolean = false;
 protected var _paused:Boolean = false;
 protected var _pauseTime:Number;
 protected var _loops:int;
 protected var _offset:Number;

 public function SoundEngineObject(name:String, sound:Sound) {
 this.name = name;
 this.sound = sound;
 }

 Each engine object stores the basic information about the
sound it creates, such as the channel, transform, number of times
it should loop, etc. Additionally, each object has a name property,
which is how the engine will keep track of, or index, them. Now,
we’ll add some methods to the object so it can perform actions
and give information:

 public function play(offset:Number = 0, loops:int = 0,
transform:SoundTransform = null):SoundChannel {

106 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 _offset = offset;
 if (channel) channel.removeEventListener(Event.SOUND_COMPLETE,
complete);
 channel = sound.play(_offset, 0, transform);
 channel.addEventListener(Event.SOUND_COMPLETE, complete, false, 0,
true);
 _transform = channel.soundTransform;
 _loops = loops;
 _playing = true;
 return channel;
 }

 public function stop():void {
 channel.stop();
 _loops = 0;
 _playing = false;
 dispatchEvent(new SoundEngineEvent(SoundEngineEvent.SOUND_STOPPED,
name));
 }

 protected function complete(e:Event):void {
 if (_loops ! = 0) {
 play(_offset, _loops–, _transform);
 } else {
 _playing = false;
 }
 dispatchEvent(new SoundEngineEvent(SoundEngineEvent.SOUND_
COMPLETE, name));
 }

 public function get playing():Boolean {
 return _playing;
 }

 The play and stop methods start and stop the sound object,
respectively, and store information about how the sound is to be
played. They also set up a listener for the SOUND_COMPLETE
event, which is dispatched when the sound fi nishes. You’ll prob-
ably notice I used a lot of the same syntax that Sound and
SoundChannel objects use to stay consistent with ActionScript’s
conventions. I also don’t tell the sound to loop at all but rather
manually loop the sound each time it fi nishes. By keeping track
of the number of loops this way, the sound can be paused and
resumed and still know how many more times it must be played.
Without this information, the sound might never reach its end.
Also, if the same sound is called multiple times before it is able to
fi nish, as might well be the case in a game where a player fi res some
type of projectile, any currently playing channel should be allowed
to fi nish and then remove itself. Also, we allow the option for sound
to loop endlessly by passing in a negative number (preferably � 1).
There is also one public “ getter ” that will return whether or not
the sound is currently playing; this functionality does not exist
in the basic Sound classes in ActionScript and is very helpful infor-
mation to have in a game. If background music is already playing,
for example, you don’t want to accidentally start it a second time.

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 107

 public function get volume():Number {
 return channel.soundTransform.volume;
 }

 public function set volume(value:Number):void {
 var tf:SoundTransform = _transform;
 tf.volume = value;
 _transform = tf;
 if (!_muted) channel.soundTransform = _transform;
 }

 public function get pan():Number {
 return channel.soundTransform.pan;
 }

 public function set pan(value:Number):void {
 var tf:SoundTransform = _transform;
 tf.pan = value;
 _transform = tf;
 if (!_muted) channel.soundTransform = _transform;
 }

 public function get transform():SoundTransform {
 return new SoundTransform(transform.volume, transform.pan);
 }

 public function set transform(tr:SoundTransform):void {
 _transform = tr;
 if (!_muted) channel.soundTransform = _transform;
 }

 These six methods allow us to set the individual proper-
ties controlling volume and pan of the sound, as well as the raw
transform object. Note that, if sounds are muted, the transforms
are stored but not applied; when they are unmuted, they will ref-
erence this stored transform.
 public function mute():void {
 if (_muted) {
 channel.soundTransform = _transform;
 } else {
 channel.soundTransform = new SoundTransform(0, 0);
 }
 _muted = !_muted;
 }

 public function get muted():Boolean {
 return _muted;
 }

 public function pause():void {
 if (_paused) {
 var normalOffset:Number = _offset;
 play(_pauseTime, _loops, _transform);
 _offset = normalOffset;
 } else {
 _pauseTime = channel.position;
 channel.stop();
 }
 _paused = !_paused;
 }

108 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 public function get paused():Boolean {
 return _paused;
 }

 The fi nal methods in the class control pausing and muting
of the sound, as well as information about each. In the pause
method, we store where the sound is when it is paused and stop it,
using this information as the offset when we resume. In the mute
method, we simply toggle between a zeroed-out SoundTransform
object and the one stored in our _transform property.

 Now that we have an understanding of how each object will
work in the engine, we can return to the main class and see how
each is accessed. Back in the SoundEngine class:

 public function playSound(name:String, offset:Number = 0, loops:
int = 0, transform:SoundTransform = null):SoundChannel {
 if (!_soundList[name]) { //SOUND DOES NOT EXIST
 var sound:Sound;
 var soundClass:Class;
 try {
 soundClass = getDefi nitionByName(name) as Class;
 } catch (err:ReferenceError) {
 trace(“ SoundEngine Message: Could not fi nd sound object
with name “ + name + “ . Attempting to load external fi le. ”);
 }
 if (soundClass) { //INTERNAL REFERENCE FOUND-CREATING SOUND
OBJECT
 sound = new soundClass() as Sound;
 } else { //NO INTERNAL REFERENCE FOUND-WILL ATTEMPT TO
LOAD
 sound = new Sound(new URLRequest(name));
 sound.addEventListener(IOErrorEvent.IO_ERROR, ioError,
false, 0, true);
 }
 _soundList[name] = new SoundEngineObject(name, sound);
 soundList[name].addEventListener(SoundEngineEvent.SOUND
COMPLETE, soundEvent, false, 0, true);
 soundList[name].addEventListener(SoundEngineEvent.SOUND
STOPPED, soundEvent, false, 0, true);
 }
 var channel:SoundChannel = _soundList[name].play(offset,
loops, transform);
 if (_allMuted) mute(name);
 return channel;
 }

 protected function ioError(e:IOErrorEvent):void {
 trace(“ SoundEngine Error Message: Failed to load sound:
 “ + e.text);

 delete _soundList[e.target.url];
 dispatchEvent(new SoundEngineEvent(SoundEngineEvent.SOUND_ERROR,
e.target.url));
 }

 protected function soundEvent(e:SoundEngineEvent):void {
 dispatchEvent(e);
 }

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 109

 public function stopSound(name:String = null):void {
 if (name) {
 if (_soundList[name]) {
 _soundList[name].stop();
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. You
must play a sound before you can stop it. ”);
 }
 } else {
 for (var i:String in _soundList) {
 _soundList[i].stop();
 }
 }
 }

 The playSound method is the largest and most important in
the entire class. It checks to see if the sound requested has ever
been played (created) before. If it hasn’t, the getDefi nitionBy-
Name method is used to look up the sound by name in the library.
If the sound cannot be found, the assumption is made that an
external fi le was requested, and the sound uses the name as the
URL to load the sound. Once the sound engine object has been
created, listeners are attached to it to be notifi ed when the sound
completes or is stopped. An additional listener is also added if the
sound is in an external fi le and loading it fails. The two additional
protected methods, ioError and soundEvent , are for dispatching
events to anything listening to the engine. The stopSound method
does what you would expect; it stops the sound passed in for
the name parameter. However, we’ve added an extra feature — if
no sound name is passed in, the engine will stop all the sounds.
There are any number of times during a game when you might
need to kill every sound that’s playing, and this prevents you from
having to name them individually.

 Next we move on to the volume, pan, and transform methods:

 public function setVolume(value:Number, name:String = null):
void {
 if (name) {
 if (_soundList[name]) {
 _soundList[name].volume = Math.max(0, Math.min(1,
 value));
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 } else {
 for (var i:String in _soundList) _soundList[i].
volume = Math.max(0, Math.min(1, value));
 }
 }

 public function getVolume(name:String):Number {
 if (_soundList[name]) {
 return _soundList[name].volume;
 } else {

110 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 return null;
 }

 public function setPan(value:Number, name:String = null):void {
 if (name) {
 if (_soundList[name]) {
 _soundList[name].pan = value;
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 } else {
 for (var i:String in _soundList) _soundList[i].
pan = value;
 }
 }

 public function getPan(name:String):Number {
 if (_soundList[name]) {
 return _soundList[name].pan;
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 return null;
 }

 public function setTransform(transform:SoundTransform, name:
String = null):void {
 if (name) {
 if (_soundList[name]) {
 _soundList[name].transform = transform;
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 } else {
 for (var i:String in _soundList) _soundList[i].
transform = transform;
 }
 }

 public function getTransform(name:String):SoundTransform {
 if (_soundList[name]) {
 return _soundList[name].transform;
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 return null;
 }

 public function getChannel(name:String):SoundChannel {
 if (_soundList[name]) {
 return _soundList[name].channel;
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 return null;
 }

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 111

 Note how each of the “ setter ” functions follows the form of the
 stopSound method; if no specifi c sound is passed in, the method
runs on all of them. Also worth noting is that for all of these
methods (except isPlaying) an error is thrown if the sound named
doesn’t exist:

 public function mute(name:String = null):void {
 if (name) {
 if (_soundList[name]) {
 _soundList[name].mute();
 if (!_soundList[name].muted) _allMuted = false;
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 } else {
 for (var i:String in _soundList) _soundList[i].mute();
 _allMuted = !_allMuted;
 }
 }

 public function pause(name:String = null):void {
 if (name) {
 if (_soundList[name]) {
 _soundList[name].pause();
 } else {
 throw new Error(“ Sound “ + name + “ does not exist. ”);
 }
 } else {
 for (var i:String in _soundList) _soundList[i].pause();
 }
 }

 public function isPlaying(name:String):Boolean {
 if (_soundList[name]) {
 return _soundList[name].playing;
 } else {
 trace(“ Sound ” ,name, ” does not exist. ”);
 return false;
 }
 }

 public function isPaused(name:String):Boolean {
 if (_soundList[name]) {
 return _soundList[name].paused;
 } else throw new Error(“ Sound “ + name + “ does not exist. ”);
 return false;
 }

 public function isMuted(name:String = null):Boolean {
 if (name) {
 if (_soundList[name]) {
 return _soundList[name].muted;
 } else throw new Error(“ Sound “ + name + “ does not exist. ”);
 return false;
 } else {
 return _allMuted;
 }
 }

112 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 Following the same pattern, the pause and mute methods work
the same way, with one minor exception. When mute is called on
all the sounds, it is assumed that all sounds should stay muted
until told otherwise. If any sounds attempt to play when _all-
Muted is true, they are created and then immediately muted as
well. The isMuted method refl ects this as well.

 You most likely noticed that the type of event dispatched by the
SoundEngine was of the type SoundEngineEvent, referring to the
fi le mentioned earlier. We’ll now take a quick look at that custom
event:

 package {

 import fl ash.events.Event;

 public class SoundEngineEvent extends Event {
 static public const SOUND_COMPLETE:String = “ soundComplete ” ;
 static public const SOUND_STOPPED:String = “ soundStopped ” ;
 static public const SOUND_ERROR:String = “ soundError ” ;

 protected var _name:String;

 public function SoundEngineEvent(type:String, name:String,
bubbles:Boolean = false, cancelable:Boolean = false) {
 _name = name;
 super(type, bubbles, cancelable);
 }
 override public function clone() : Event {
 return new SoundEngineEvent(type, name, bubbles, cancelable);
 }
 public function get name():String {
 return _name;
 }
 }
 }

 The three constants defi ned at the top of the class are used to
clearly defi ne the types of events that the SoundEngine can dis-
patch. The SoundEngineEvent is just like a normal Event, except
that it contains one extra piece of data: the name of the sound
that generated the event. Without this, there would be no distin-
guishing one sound event from the next, especially when many
were occurring at once.

 Using the Class
 Now that we have the class complete, we’ll set up a test fi le to

ensure that it is working. Create a new ActionScript 3 FLA. Import
the test sound effect provided to the library. To set up the sound
to be available to ActionScript, double-click it to pull up its prop-
erties panel. Under the Linkage area, select the checkbox Export
for ActionScript. In the Class fi eld, type “ Explosion ” ; this is how
you’ll refer to this sound from this point on. Flash will automati-
cally fi ll in the Base Class as an object of type Sound.

Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO 113

 Figure 7.5 Use the Linkage properties to set up a sound for export.

 Save the FLA alongside the SoundEngine class fi le so Flash will
know how to fi nd it. Open the Actions panel and type the follow-
ing in frame 1:

 var se:SoundEngine = SoundEngine.getInstance();
 se .playSound(“ Explosion ”);

 When you test your SWF, you should hear the sound effect play.
Note that we create a reference to the SoundEngine for conve-
nience. If you were merely calling a single sound effect in a script
and had no reason to store a reference, you could shorten the call
this way:

 SoundEngine .getInstance().playSound(“ Explosion ”);

 Because this engine only exposes the existing functionality of
the Sound classes in a simpler and more convenient way, there is
plenty of other functionality that could be added in companion
classes. For example, the ability to fade out sounds over time or
being able to crossfade sounds to create musical transitions are
both features that don’t make sense in a basic sound engine but
are very useful in games.

 The SoundMixer Class
 One other class worth mentioning in the audio section of Flash

is the SoundMixer. It is the global sound controller for the Flash
Player and has its own SoundTransform. If you need to do some-
thing basic like simply mute all the sounds in your game outside of
the SoundEngine, you can accomplish it with a very simple script:

 SoundMixer .soundTransform = new SoundTransform(0);

 You can also use the SoundMixer to stop every sound that is
playing inside of Flash, the descendant of stopAllSounds () from all
the way back in Flash 3. While I recommend using a class like the
SoundEngine to manage playback and control of your sounds,
SoundMixer is a nice fallback if you are loading in content cre-
ated by someone else and you need to control any rogue sounds.

114 Chapter 7 TURN IT UP TO 11: WORKING WITH AUDIO

 The bottom line to remember with sounds is to not for-
get them. There is almost no game experience that cannot be
enhanced by a well-implemented soundtrack. Make audio a pri-
ority and your game will be stronger as a result.

 Techie Note. Flash Hack: The Sound of Silence

 At a conference I once heard a Flash cartoonist reveal a secret for how he
made sure Flash could keep up with the set frame rate and slow down on
older machines. While it applied to Flash 5, I’ve found it can still help in a
pinch today. Basically, he would put a clip on the main timeline that had a
one-second sound with total silence in it, set it to stream, and loop it 9 or
10 times. The way Flash is designed to work is that it will skip rendering
frames to stay in synch with streaming sounds on the timeline. It will how-
ever, continue to process frame scripts, meaning any scripts that are reliant
on the frame rate will still run. In essence, it may make gameplay choppier
on slow computers, but it will play at the correct speed. The reason he
looped it a number of times is that each time a streaming sound restarts the
Flash Player will stutter momentarily if the processor is maxed out. The clip
will play straight through and only have to restart the stream every
10 seconds or so. At this rate it is barely noticeable and makes a huge
impact on the playability of complex games. Since the sound is made up
of silence, you can use the highest compression settings possible that would
turn any other sounds to utter garbage and it won’t make a difference.
It won’t add more than a few kilobytes to your end fi le and is worth the
peace of mind that the game will at least keep up on older machines.

115
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 PUT THE VIDEO BACK IN
 “ VIDEO GAME ”

 Video is probably used more than you might initially think in
Flash games. It is a great format for non-interactive cutscenes
because the performance is consistently satisfactory (Adobe has
put a great deal of effort into making sure video plays smoothly
in Flash), and it can be created and stored completely externally
to a game. In this section, we’ll see how it is also an excellent con-
tainer for character animations, particle effects, and other small
in-game animations. We’ll also explore the Adobe Media Encoder
that comes with Flash CS4 and the different settings to use for
each type of video.

 Video Codecs
 Flash can handle a few different formats of video, all of which

cater to different uses. The fi rst, and oldest, is Sorenson Spark.
While it is tends to show the most compression artifacts on
higher resolution video, its processor requirements are mod-
est and it requires the least horsepower of any of Flash’s codecs.
It works well for a game that needs to support older machines
and where the video isn’t going to get very large. In Flash 8, Flash
introduced the On2 VP6 codec. The compression quality and fi le
size is much improved over Spark, albeit at a higher cost of CPU
overhead. The best feature about VP6 is that it can be encoded
with an alpha channel so parts of the video can be transparent.
Though for larger video an alpha channel can begin to drag down
performance, at smaller dimensions it is a lifesaver for both per-
formance and fi le size (which we will discuss momentarily). The
fi nal, and most recent, addition to Flash CS4 is the inclusion of
H.264 (or MPEG-4-based) video. It is by far the best-looking video

 8

116 Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME”

 available in Flash and rivals the quality of either QuickTime or
Windows Media Player. The two drawbacks are that it is very pro-
cessor intensive and it does not support an alpha channel, so you
can think of it as more of an upgrade to Spark than a replacement
for VP6. I would recommend it for cutscenes in games where the
target machine is relatively new; the quality cannot be beat.

 External Video Uses: Cutscenes and Menus
 With console and commercial computer games reaching

awe-inspiring levels of graphical sophistication, the bar is natu-
rally raised on even simple web-based games to look polished
and “ modern. ” One way to achieve this feel is through the use of
cutscenes in games that are story driven. When used wisely (and
not overused), such as between levels or as a payoff at the end,
they add a very cinematic quality to a game.

 Figure 8.1 Video cutscenes can add a very immersive element to a game and can make
Flash games look more on par with commercial games.

 Another way of effectively incorporating video is in menus.
Most players of Flash games are used to just static buttons and
text on a menu screen. By utilizing even a simple video loop cre-
ated in Adobe After Effects (or even created in Flash and then
exported as a movie), a menu can feel much more dynamic and
hold a player’s visual interest enough to get them into the game.
Because these two uses of video are passive, or non-interactive,
it makes the most sense to load the video fi les in externally rather
than embedding them in the game SWF. We’ll now discuss how
to encode the video and after that how we load in that video and
play it as a cutscene using ActionScript.

Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME” 117

 Encoding a Cutscene
 Adobe has replaced the Flash Video Encoder that came with

previous versions of Flash with the far more robust and com-
pletely redesigned Media Encoder. It takes any video, audio, or
image sources and converts them into one of the basic Flash-
compatible video formats. It can be intimidating to use at fi rst,
as there are many options to consider. Luckily, most of the pre-
sets will work well for our needs, some with only minor modifi ca-
tions. We’ll now walk through the process of encoding a couple of
videos using different settings, based on how we would use the
video in a game.

 To walk through this example, you’ll need the video sup-
port fi les for this chapter from this book’s website, fl ashgame-
book.com. Since it comes with Flash CS4, I’ll assume you have
the Media Encoder. Launch the program and drag the video fi le
named Cutscene.mov into the program. This will add it to the list
of media to be encoded.

 Figure 8.2 The Adobe Media Encoder offers a wide range of presets so you don’t have
to tweak every setting by hand, unless you want to.

 Once you have added your video, you’ll see that there are a few
columns of settings. Second from the left is the Format column. If
it is not already set to FLV/F4V, toggle it to that setting now. To the
right of the format is the Preset column. If you were using a stan-
dard preset for the video, you could select it from a list. In our case,

118 Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME”

 we want to select the very fi rst option in the preset list, “ F4V Same
as Source. ” This setting will produce an H.264 Flash video fi le with
the same dimensions and audio settings as the original fi le (in this
case, 710 � 386, 30 fps). Because this cutscene would be used in a
web game, we don’t need that level of quality. Click just to the right
of the drop-down arrow to customize the settings.

 Figure 8.3 You can customize the presets for the video to suit your needs.

 In the lower right quadrant of the window you will see a fi ve-
tabbed panel for adjusting the settings of the encoder. Select
the Video tab and check Resize Video. A good rule of thumb for
cutscenes (and video in general) in Flash is that you can very
often get away with encoding it between one-half and two-thirds
the size of the original and scale the video in Flash without dras-
tic quality loss. Your tolerance of the compression may vary, but
in this case we’re going to set the dimensions to 470 � 255. Scroll
down in the video panel until you reach the Bitrate Settings.
Select VBR, 2-Pass (meaning the encoder will double-check its
work to deliver the highest possible quality) from the Bitrate
Encoding drop-down. Set the Target Bitrate to .5 (or 500 kbps) and
the Maximum Bitrate to .75 (or 750 kbps). Because this clip has a
lot of motion in certain parts, we want the encoder to be more
generous with those frames but more conservative with others.
Next select the Audio tab. From the Bitrate Settings drop-down,
select 96 kbps. This will compress the audio cleanly and still pro-
vide ample quality for our needs. At this point, the encoder is
estimating the fi le size at right about 1 MB, as you can see to the

Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME” 119

 left of the Cancel button. If you were encoding several videos, you
could save these settings as a preset in the upper-right quadrant
of the panel. For our purposes, just click OK and return to the
main screen. With our video ready to encode, click Start Queue.

 Figure 8.4 Once you’ve defi ned the settings for your video, click Start Queue to begin
encoding.

 What you should end up with, beside the original MOV fi le, is
an approximately 1-MB F4V fi le. At roughly 15 seconds in length,
this is probably still a little large for people on slower connec-
tions, so you’ll want to take your audience into account when
encoding. Now let’s write some code to play what you’ve just
encoded.

 The CutsceneManager
 I typically create a class to manage cutscenes that can sit on top

of the gameplay and easily be called to play transition videos, so
we’ll set one up. There are a couple of reasons for using a custom
class, fi rst of which is the fact that just setting up and loading a
video in Flash requires many lines of imports and code. Only hav-
ing to type these lines once by containing them within a fl exible
wrapper is the essence of sound programming. Another reason
to use a custom class is to be able to trigger custom notifi cations
for events. Video playback in Flash generates a lot of events, some

120 Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME”

 purely informational and some error based, and having to fi lter
through all the messages can be cumbersome when all you’re
trying to do is play a cutscene. Having the class listen for just the
pertinent messages and distill them down into a couple of useful
events simplifi es the process even further.

 This class isn’t as involved as the SoundEngine we looked at
earlier, and it is self-contained in one fi le.

 package {
 import fl ash.display.Sprite;
 import fl ash.events.AsyncErrorEvent;
 import fl ash.events.Event;
 import fl ash.events.KeyboardEvent;
 import fl ash.events.NetStatusEvent;
 import fl ash.events.SecurityErrorEvent;
 import fl ash.media.Video;
 import fl ash.net.NetConnection;
 import fl ash.net.NetStream;
 import fl ash.ui.Keyboard;

 public class CutsceneManager extends Sprite {
 }
 }

 The CutsceneManager extends the Sprite class, so it can easily
be added to the Stage like any other DisplayObject. Because it uses
video, it needs not only the Video class but the NetConnection and
NetStream classes, as well. Some examples I’ve seen import the
entire events package (import fl ash.events.*), but for this example
I’ve added each of the necessary events manually. Finally, we’ll
include the KeyboardEvent and Keyboard classes so we can bind a
key to skip the video — a handy feature that prevents players from
having to potentially sit through a video over and over again.

 public var skipKey:uint = Keyboard.SPACE;

 protected var _nc:NetConnection;
 protected var _stream:NetStream;
 protected var _video:Video;
 protected var _activeVideo:String;

 We only need to keep track of a few variables for this class. The
skipKey property is exposed publicly so you can set it to whatever
keystroke you’d like; it defaults to the spacebar. The protected
properties are all related to keeping track of the video.

 public function CutsceneManager(width:int, height:int): void {
 setupConnection();
 _video = new Video (width, height);
 addChild(_video);
 }

 protected function setupConnection() :void {
 _nc = new NetConnection();
 _nc.addEventListener(NetStatusEvent.NET_STATUS, netStatus,
false, 0, true);

Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME” 121

 _nc.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
securityError, false, 0, true);

 _nc.connect(null);
 }

 The constructor function creates a new CutsceneManager and
sets up both the NetConnection and Video objects and prepares
them for use. The NetConnection instance sets up a couple of lis-
teners as well, which we’ll look at next.

 protected function netStatus(e:NetStatusEvent) {
 switch (e.info.code) {
 case “ NetStream.Play.StreamNotFound ” :
 trace(“ Unable to locate video: “ + _activeVideo);
 break;
 case “ NetStream.Play.Start ” :
 dispatchEvent(new Event(Event.INIT));
 break;
 case “ NetStream.Play.Stop ” :
 stopCutscene(Event.COMPLETE);
 break;
 }
 }

 protected function securityError(e:SecurityErrorEvent):void {
 trace(e);
 }

 protected function asyncError(e:AsyncErrorEvent):void {
 //IGNORE ASYNCHRONOUS ERRORS
 }

 NetStatusEvent messages are used for both NetConnection and
NetStream objects. Any time anything happens to the connec-
tion or video stream, messages are broadcast and captured by one
event. Using a switch statement we fi lter through them for the mes-
sages important to us. In this case, we want to know if the video
fails to load, when the video actually starts playing, and when it
fi nishes. There are two other events we need to set up listeners for,
which are error based. It’s not that we should be overly concerned
with these errors, but without a listener attached to them they will
throw real runtime errors that can break other parts of your code.
Now that we’ve covered all the “ under-the-hood ” code, we’ll take a
look at the main methods used to control the manager:

 public function playCutscene(url:String) : void {
 _activeVideo = url;
 _stream = new NetStream(_nc);
 _stream.addEventListener(NetStatusEvent.NET_STATUS,
 netStatus, false, 0, true);
 _stream.addEventListener(AsyncErrorEvent.ASYNC_ERROR,
 asyncError, false, 0, true);
 _video.attachNetStream(_stream);
 _stream.play(url);

122 Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME”

 if (stage) stage.addEventListener(KeyboardEvent.KEY_DOWN,
 skipCutscene, false, 0, true);
 }

 public function stopCutscene(eventType:String = Event.CANCEL)
: void {
 _stream.close();
 _video.clear();
 dispatchEvent(new Event(eventType));
 if (stage) stage.removeEventListener(KeyboardEvent.KEY_
 DOWN, skipCutscene);
 }

 public function get activeVideo():String {
 return _activeVideo;
 }

 protected function skipCutscene(e:KeyboardEvent) {
 if (e.keyCode = = skipKey) stopCutscene();
 }

 The playCutscene method is the heart of this class. It accepts
a URL string, sets up the stream, and links it to the video. It also
adds a listener for keystrokes so you can defi ne a key that will skip
the cutscene. You probably noticed back in the netStatus method
that upon the video fi nishing it calls stopCutscene and passes
a parameter of Event.COMPLETE. By default, the stopCutscene
method will assume that the video was terminated prematurely
when it is called. This way you will be able to differentiate from
outside of the class whether the video was able to fi nish playing
or if it was skipped. In addition to dispatching a message about
the status of the video, the stopCutscene method performs two
other important functions. One is to the close out the NetStream
object (whether or not video is still coming from it) and the other
is to clear the video. Without the latter, the last frame of the video
would stay in the Video object, covering up everything behind it.

 Using the CutsceneManager
 At this point we’ve written less than 100 lines of code, and it

will allow us to easily call in a video for use as a cutscene in less
than fi ve lines. Open up a new FLA fi le in Flash and save it next
to the CutsceneManager class. Set the dimensions of the FLA to
710 � 386, the original size of the video we’re going to load. If you
followed the Adobe Media Encoder example earlier in this chap-
ter, copy the Cutscene.f4v fi le you created next to the FLA. If not,
you can fi nd this same fi le in the support fi les for this chapter.
Then, on the fi rst frame of the FLA, add these lines:

 var cm:CutsceneManager = new CutsceneManager(stage.
stageWidth, stage.stageHeight);
 addChild (cm);
 cm .playCutscene(“ Cutscene.f4v ”);

Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME” 123

 You should see the video start to play, fi lling up the whole
Stage. Since we haven’t specifi ed another key, press the spacebar
before the video fi nishes and you will see it go away quickly and
cleanly. If we wanted to get information about when the video
fi nishes playing, all we need is a few more lines:

 cm .addEventListener(Event.COMPLETE, cutsceneFinished, false,
0, true);
 function cutsceneFinished(e:Event) {
 trace(e);
 }

 That ’s it. This class will work with any format of Flash-compat-
ible video and should save a lot of time when you’re in a crunch.
This class could also be modifi ed pretty easily to work with a
menu background loop, as well. Instead of clearing itself when
the video reached the end, it would simply need to loop back
to the beginning. You would also probably want to remove the
skip functionality.

 Video on the Timeline
 Though an externally loaded fi le works great for non-interac-

tive video, it’s not the best option for video that is used in game-
play or when you need clips with alpha transparency. Image
sequences like short character animations, particle effects, etc.,
tend to require a transparent background to integrate seamlessly
with the background. Conventional thinking in Flash would dic-
tate using a series of portable network graphic (PNG) images that
simply played back in order. Much of the time, however, the best
option is actually to import the sequence as a video fi le directly
into your library and use it on the timeline like a MovieClip. If
all you have are image sequences to work with (not all anima-
tion programs produce video formats directly compatible with
Flash), fear not! In an upcoming section on using the Adobe
Media Encoder I’ll show you how to use Flash as a video editing
tool. There are a few reasons to consider using video instead of a
sequence of PNG fi les.

 File Size
 Most of the time, a Flash video fi le (FLV) encoded with an alpha

channel is going to be smaller than the equivalent PNG sequence,
even with relatively high JPEG compression turned on in Flash.
This is because the On2 VP6 codec is designed for handling motion
and applies its compression more effi ciently than JPEG. When an
encoder compresses a video, it make decisions about what data
will change from one frame to the next, stripping out anything

124 Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME”

 it doesn’t need to duplicate. Single images only have their image
data to work with and cannot benefi t from the other images in a
sequence. Video can also be encoded in what is known as vari-
able bit rate (VBR). Instead of using the same compression across
the board for every frame, the encoder determines which frames
can benefi t from extra compression and which ones need to stay
higher quality. For example, if several frames of a video are all one
color or have very little detail, the encoder will compress them
heavily, whereas frames with a lot of motion and color data will
receive lighter compression. While you could manually apply the
same principle to all the images in a sequence, it would be much
more time consuming and certainly tedious.

 Ease of Use and Library Clutter
 Say you have 10 different one-second character animations

for a player in a game. At 30 frames per second, this would equal
300 images. Using a video in place of each of these sequences
would result in only 10 library items — much more manage-
able and easy to update if changes are made. Simply replace one
video instead of 30 images. This effi ciency also translates to time-
line management. Because a video is already treated as a single
DisplayObject, sort of like a MovieClip of images, it’s much easier
to rearrange them on Stage and in the timeline without having to
select multiple frames at once.

 Performance
 Even with the extra performance overhead an alpha-channel

video clip brings, it is still more effi cient than a series of images,
particularly as the dimensions of the clip increase. This is because
Adobe has put a lot of effort into making the video playback
engine perform well even on modest machines. Also, in the con-
text of Flash’s timeline model, a PNG sequence requires the ren-
derer to add and remove images on every frame, which is a more
intensive task.

 Free Motion Blur
 The compression used on video tends to have a slight soften-

ing effect, depending on what settings were used in the encoder,
and that effect can actually be helpful in creating a sense of
motion blur on videos with a lot of movement. Since Flash can-
not natively do directional motion blur, this effect would be
much harder to produce with a series of images. Obviously, if
the encoder is smudging the video too much you might want to
change the compression settings.

Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME” 125

 Setting Up an Internal Video
 Let ’s walk through a practical example of setting up a timeline-

based video and test the fi le size improvement. The support fi les
for this exercise are can be found on this book’s website, fl ashgame-
book.com. In this example, I have a 15-frame running sequence
for a character that will need to loop. It currently exists as an image
sequence of PNG fi les. Open a new Flash authoring fi le (FLA) and
save it as ImageSequence.fl a. Set the Stage size to 200 � 200. Import
the fi rst image from the sequence into Flash. It will prompt you if
you would like to import the whole series; click Yes. You should now
have the image sequence on the Stage. Test the SWF and you will
see a running cycle animation that loops. It should be roughly 66 kb.
You may be thinking “ 66 k is nothing in this broadband age! How
much could I possibly gain by using a video instead? ” You’d prob-
ably be surprised just how much. This is just one video that is less
than one second long. The game that employed this particular char-
acter had this same animation, as well as about nine others, from
three other angles (left, right, and back) in order to make it feel like
the character was moving in a three-dimensional space. That is over
2.5 MB for all those animations, and that’s just for one character.

 To turn this sequence into a video, select Export → Export
Movie from the File menu in Flash. Give the movie the name
 ImageSequence and select QuickTime from the Format drop-
down. You will be presented with a QuickTime Export Settings
window. Check the box to ignore stage color and generate an
alpha channel. Tell it to store the temp data on disk, as it is more
reliable for most image sequences. Click the QuickTime Settings
button to bring up one more dialogue. The default settings
should be correct, but just make sure the video is set to export at
200 � 200, 24 fps, using the Animation compressor and Millions
of Colors � . All this means is that it will create a movie fi le with
an alpha channel that we can then encode as Flash video. Click
OK and then click Export. Flash will let you know when it is fi n-
ished, which should only be a matter of seconds.

 Techie Note. When PNGs Still Win

 Say you had an animation sequence of a character crouching. To be as
effi cient as possible, you would probably use the same animation for
the character entering the crouch as coming out of it, just reversing the
latter. This is possible with a sequence of images that you have complete
control over but not so with video. You would have to create the second
animation separately and at that point you will have lost any fi le size
savings from using video in the fi rst place. How you intend to use anima-
tion sequences in your game should dictate which format you use.

126 Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME”

 Figure 8.5 The Quicktime Export settings give you a number of options for exporting a
Flash timeline animation to an MOV fi le.

 At this point you should have a new MOV fi le ready to encode.
Launch Adobe Media Encoder and drag the ImageSequence
movie onto it. Select FLV/F4V as the format and select FLV –
Same as Source (Flash 8) from the preset options. Then open up
the settings to customize the preset. Under the Video tab, select

 Figure 8.6 When encoding a PNG sequence into an FLV, be sure to check the Encode
Alpha Channel box.

Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME” 127

 the Encode Alpha Channel box. Then scroll down to the Bitrate
Settings and lower the bit rate to 250 kbps. This may seem small,
especially after encoding an enormous cutscene fi le, but for
small animations like this it is usually more than enough. This is
the one option that I tend to change per project because I haven’t
found one setting that works across the board for every type of
animation. At this point, the encoder should be estimating the
FLV at 36 to 30 k less than the image sequence we created in
Flash. Click OK and Start Queue to encode the video.

 To do a true comparison of the two resulting SWF fi les, create
a new FLA that is 200 � 200. Save it as VideoSequence. Import
the ImageSequence.fl v fi le. It will bring up the Import Video win-
dow. Select the option to Embed FLV in SWF and click Continue
twice. Click Finish on the summary screen, and the video will be
added to your FLA on the Stage. If you test this SWF alongside the
ImageSequence SWF, you’ll notice that indeed the video version
is 30 k smaller and looks almost identical. One could argue that

 Figure 8.7 A side-by-side comparison of a PNG sequence and a video of the same
sequence.

128 Chapter 8 PUT THE VIDEO BACK IN “VIDEO GAME”

 it is possible to lower the JPEG quality of the PNG sequence and
that SWF will drop down to around 40 k. However, you still are left
managing a bunch of images rather than just one video fi le, and
now the image sequence will (usually) look worse than the video.
Remember that, even though the savings in this example is small,
most games will use far more assets than just a single character;
always calculate the savings to the scale of your project to deter-
mine if using video is worth the extra few steps.

 Summary
 In this chapter we covered:

 ● The different formats of video that Flash will accept and
when to use them

 ● How to use the Adobe Media Encoder to create both
cutscene-style videos and alpha-channel clips

 ● How to create a CutsceneManager that handles loading
external video fi les

 ● How to use video on the timeline in place of image
sequences

129
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 XML AND DYNAMIC CONTENT

 Many Flash games are self-contained SWF fi les. They don’t load
any additional fi les in and they don’t send any type of data out; how-
ever, this closed architecture prohibits a number of scenarios, such as:

 ● Externalized content (such as puzzle data or even game copy)
 ● The ability to save to a public high-score table
 ● Localization to other languages
 ● Level editors and user-generated content

 In this chapter, we’ll explore how features like these can be
implemented using a variety of features in ActionScript.

 Bringing Data In: Understanding the
URLLoader Class

 The core component behind sending and loading basic text,
XML, and binary data is the URLLoader class. It takes only a
few lines of code to load some data and begin working with it.
Consider this example:

 var loader:URLLoader = new URLLoader(new URLRequest (“ confi g.txt ”));
 loader .addEventListener(Event.COMPLETE, onTextLoad, false, 0, true);
 function onTextLoad(e:Event) {
 trace(“ Text: “ + e.target.data);
 }

 All this code does is load a text fi le and trace what is in it. In and of
itself this is not especially useful until you consider what you could
put inside the fi le. Maybe your game has a lot of text dialogue and
you don’t want it mixed in with your code, or it has a bunch of legal
copy you don’t want to mess with pasting inside a text fi eld in Flash.
Word-based, trivia, and many other puzzle games are also good
candidates for loading in external content, allowing you to add new
content without having to republish the game fi le. We’ll look at an
example of this type of game shortly.

 9

130 Chapter 9 XML AND DYNAMIC CONTENT

 XML
 By default, a URLLoader simply loads in plain text, which is fi ne

for most applications involving local fi les. By itself, however, text
does not lend a great deal of fl exibility. It needs to be organized into
a format that has a structure. This is where XML comes in. If you’re
not already familiar with it, XML is, in brief, a markup language
(similar in format to HTML) for organizing data into a structured
format. Here is an example of some simple XML defi ning a quiz:

 < quiz >
 < problem >
 < question > What does this book cover? < /question >
 < answer > Flash Game Development < /answer >
 < answer > Java Game Development < /answer >
 < answer > C + + Game Development < /answer >
 < /problem >
 < problem > …etc. < /problem >
 < /quiz >

 As you can see, XML is incredibly fl exible, allowing you to defi ne
exactly how you want your data structured. XML structures can
become extremely complex, particularly for large-scale applica-
tions, but this example also shows how simple it can be. In this case,
we’ve defi ned that a quiz contains problems. Each problem has a
question and three answers, the fi rst of which is correct. By setting
up your data with a logical hierarchy, we can access it easily from
inside Flash.

 E4X
 If you worked with XML in ActionScript 1 or 2, you know how

unwieldy it was to handle. Unless you used a very robust parser,
most changes to the structure of the XML would break your code.
A new feature in ActionScript 3 is the ability to parse through
XML data just like any other object in Flash. This feature is known
as E4X (ECMAScript for XML), and it makes XML a native data
type in Flash, just like numbers or strings. Because of this, parsing
XML is much faster and allows you to move through a structure
like you would a set of objects and arrays. The following example
uses a URLLoader to load the XML used in the previous example:

 var quiz:XML;
 var loader:URLLoader = new URLLoader(new URLRequest(“ quiz.xml ”));
 loader .addEventListener(Event.COMPLETE, onXMLLoad, false, 0, true);
 function onXMLLoad(e:Event) {
 quiz = XML(e.target.data);
 trace(quiz.problem[0].question); // “ What does this book cover? ”
 }

 To use the data as XML once it is loaded, you simply use the
XML conversion function and assign it to a variable. To learn

Chapter 9 XML AND DYNAMIC CONTENT 131

 more about the more advanced features of E4X, such as fi ltering
and searching, look to the Flash reference documentation on
XML. For the purposes of this chapter, our use of XML will be
more straightforward. Let’s look at a practical example of how it
can be used to store puzzle data for a game.

 The Crossword Puzzle
 One of the most popular types of word games in print or elec-

tronic media is the crossword puzzle. There are many variations
of the crossword puzzle, but the traditional American square grid
type is the style we will work with. It consists of overlapping hori-
zontal and vertical words with unique numbers denoting the start
of a word. Each word has a clue associated with it which can be
another word or an entire phrase.

1

14 15 16

17 18 19

20 21 22

23 24

26 27 29 30 3128

25

32 33 34 35

36 37 38

39 40 41

42

45 46 47 48 49

43 44

55 56 57

50 51 52 53 54

58 59 60

61 62 63

2 3 4 5 6 7 8 9 10 11 12 13

 Figure 9.1 An American-style crossword puzzle.

 In the following exercise, we will lay out the structure of a
crossword puzzle in XML and then create a simple crossword
engine that will display the puzzle and allow a player to fi ll it in.

132 Chapter 9 XML AND DYNAMIC CONTENT

 Any XML to be used in Flash must have only one root node , which
is the node that opens and closes the fi le. Any additional nodes
will be ignored when the XML is parsed. We start with an opening
node labeled “ crossword, ” which will encase our entire puzzle.
Inside an opening XML tag you can add parameters, called attri-
butes , which allow you to add any pertinent information to the
node. In this case, we defi ne the width and height of the puzzle
in question. Attribute values should be in quotes and do not need
any type of separator between them:

 < crossword width = “ 13 ” height = “ 13 ” >
 < /crossword >

 Now we can begin to break the crossword down into its core
components: the grid layout (which we will call the “ puzzle ” in
this case) and the clues. The grid squares either can have letters
or can be blacked out so no letters can be entered. We’ll break
down the puzzle by rows and use a special character to denote
the black spaces. For this example, we’ll use the underscore (“ _ ”).
Each row will spell out one line of the puzzle in a single string:

 < puzzle >
 < row > ASKS_SON_DOME < /row >
 < row > SENT_ONE_EVEN < /row >
 < row > HAIR_MOW_FEED < /row >
 < row > ___ STARE_SHIRTS < /row >
 < row > ___PAWS_IN___ < /row >
 < row > HAT_WHISPERED < /row >
 < row > IRON_ANT_DARE < /row >
 < row > DEPARTURE_TAN < /row >
 < row > ___TO_SEAR___ < /row >
 < row > SHRUBS_ARISE_ < /row >
 < row > TOUR_OAK_DIGS < /row >
 < row > ELLA_LIE_EDGE < /row >
 < row > PEEL_ODD_REST < /row >
 < /puzzle >

 As you can see, this structure is very readable and allows us to
see basically what the puzzle will look like before it is even in a
grid. It is important to remember that, while there are many stan-
dards in XML, there is no reason to overcomplicate the path to get
to your data. Keeping it readable like this will also help us catch
mistakes faster.

 Next , we need to add the accompanying clues for this puzzle.
We will do this by simply adding a clue node with two types of
clues in it — down and across:

 < clues >
 < across > Questions < /across >
 < across > Harry Potter to Lily Evans < /across >
 < across > Igloo, for example < /across >
 < across > Emailed < /across >
 < across > Lonely number < /across >
 < across > Opposite of 60 Across < /across >

Chapter 9 XML AND DYNAMIC CONTENT 133

 < across > It grows on you < /across >
 < across > Cut grass < /across >
 < across > Fill a dog’s dish < /across >
 < across > Look at intently < /across >
 < across > They have sleeves < /across >
 < across > Animal feet < /across >
 < across > With 41 Across, keen on < /across >
 < across > Fedora, e.g. < /across >
 < across > Spoke quietly < /across >
 < across > It’s pumped in a gym < /across >
 < across > Social insect < /across >
 < across > “ I __ ya! ” (challenge) < /across >
 < across > Lounge in an airport < /across >
 < across > Lie in the sun < /across >
 < across > See 24 Across < /across >
 < across > Burn the surface of < /across >
 < across > Small trees < /across >
 < across > Come up < /across >
 < across > Take a trip around < /across >
 < across > Mighty tree < /across >
 < across > Uses a shovel < /across >
 < across > Famous singer Fitzgerald < /across >
 < across > Tell a tall tale < /across >
 < across > Rim < /across >
 < across > Open a banana < /across >
 < across > Opposite of 14 Across < /across >
 < across > Take fi ve < /across >
 < down > Fire leftover < /down >
 < down > Oceans < /down >
 < down > Make a sweater, perhaps < /down >
 < down > Guitar holder < /down >
 < down > Sort of < /down >
 < down > Yoko __ < /down >
 < down > Reporter’s offering < /down >
 < down > Gave the meaning of a word < /down >
 < down > Above < /down >
 < down > Get together < /down >
 < down > Finishes < /down >
 < down > Not cooked < /down >
 < down > ___-Hop < /down >
 < down > Cavity in the head < /down >
 < down > With 50 Down, what one did for Easter, maybe < /down >
 <down > “ ___ we there yet? ” < /down >
 <down > Apex < /down >
 < down > Made like a comet < /down >
 < down > Remy, the chef, is one < /down >
 < down > Period in history < /down >
 < down > Fox’s home < /down >
 < down > Not synthetic < /down >
 < down > Steal < /down >
 < down > Hole in the head < /down >
 < down > Ghost _ (Johnny Blaze) < /down >
 < down > “ __ on it! ” (hurry up) < /down >
 < down > Golfer’s target < /down >
 < down > Be king, say < /down >
 < down > Alone < /down >
 < down > Border < /down >

134 Chapter 9 XML AND DYNAMIC CONTENT

 < down > See 25 Down < /down >
 < down > Band-__ < /down >
 < down > Sun__ (day’s end) < /down >
 < clue >

 Note that we are not interested in which clue is associated
with which word in the puzzle, but rather put them in ascending
order. This is because if we build our crossword engine correctly
there will eventually be a one-to-one association between a word
and its clue. Not hardcoding the number allows us to move clues
around if a mistake was made or one was left out.

 For this example, we’ll break down the crossword engine into a
few components. At its core, a crossword can be broken down into
individual tiles, so we’ll create a class to represent a tile. Together
they make up the grid, or puzzle, so the main class driving the
engine will be a puzzle class. At this point, one could argue the mer-
its of creating a class to defi ne a word, but in terms of practicality a
word is nothing more than an array of tiles so for our purposes we’ll
keep it simple. Finally, we need a way to display the clue for a given
word, so we’ll make a class to handle that.

 The CrosswordTile Class
 The best way to solve a complex problem is to break it down

into smaller, more manageable problems. Such is the case with
the CrosswordTile class. This class will keep track of the correct
letter for a given tile and whether or not that tile is active in game-
play. We’ll discuss how a different class could handle rendering
the tile in Chapter 10, but for now this class will control that as
well. To start, we’ll set up our class and package:

 package {

 import fl ash.display.MovieClip;
 import fl ash.events.Event;
 import fl ash.events.KeyboardEvent;
 import fl ash.text.TextField;
 import fl ash.geom.Point;
 import fl ash.ui.Keyboard;

 public class CrosswordTile extends MovieClip {
 }
 }

 Because this class will handle display as well as the data in the
tile, we’ll extend it from MovieClip and use frames to store its dif-
ferent states.

 Instead of starting with the constructor for the class, let’s outline
the different properties this tile should keep track of. This will consist
of both basic public variables and protected variables with public
getters and setters:

 // PUBLIC DisplayObjects
 public var letterField:TextField;

Chapter 9 XML AND DYNAMIC CONTENT 135

 public var wordField:TextField;

 // PUBLIC VARIABLES
 public var letter:String;
 public var acrossIndex:int = − 1;
 public var downIndex:int = − 1;
 public var tileIndex:Point;

 // PROTECTED VARIABLES
 protected var _wordIndex:uint;
 protected var _answer:String;

 // GETTER/SETTERS
 public function get wordIndex():uint {
 return _wordIndex;
 }

 public function set wordIndex(value:uint):void {
 _wordIndex = value;
 wordField.text = (_wordIndex) ? _wordIndex.toString(): “ ” ;
 }

 First we declare two TextField objects that will be used to dis-
play the letter in the tile when it is entered and the number of the
word if it is the fi rst letter. The letter property will be used to store
the letter that belongs in this square. Note that this is not the let-
ter that will be used to store user input, but rather the correct
answer from the XML. The acrossIndex and downIndex variables
will store the tile’s associations with any horizontal or vertical
words. For the tileIndex, or the actual grid position in the puzzle,
we use a Point object because it already has x and y properties.

 Next we have two protected variables, one of which has getter/
setter methods. The wordIndex property is used to store the word
in the puzzle (horizontal or vertical) to which the tile belongs.
The _answer property is what will store a player-inputted answer.
We now move on to the publicly exposed methods, which can be
called from outside the class:

 public function setAnswer(e:KeyboardEvent):Boolean {
 if (e.keyCode > = String(“ A ”).charCodeAt(0) & & e.keyCode < =
String(“ Z ”).charCodeAt(0)) {

 Techie Note

 You don’t always have to use getters and setters for every publicly exposed
property in your classes. If a variable is purely being stored, the extra
overhead of a function to do so is unnecessary. Use getters and setters
when some other action needs to take place when a value is set, but you
want the simplicity of a simple variable assignment. As long as you keep to
a standard convention (protected/private variables always begin with an
underscore, for example), you can easily convert the public variable to a
getter/setter property later on and not change more than a couple of lines
of code. Getters also come in handy when you want a value to be readable
but not writeable; simply omit the setter and you’re done!

136 Chapter 9 XML AND DYNAMIC CONTENT

 _answer = String.fromCharCode(e.keyCode);
 letterField.text = _answer;
 return true;
 } else if (e.keyCode = = Keyboard.BACKSPACE) {
 _answer = ” ” ;
 letterField.text = _answer;
 }
 return false;
 }
 public function deactivate() {
 gotoAndStop(2);
 }
 public function activate() {
 gotoAndStop (1);
 }

 When a user enters keyboard input on a tile, it will call setAnswer .
This method is a combination of a normal function another class
would call, but it accepts a KeyboardEvent as its parameter like an
event handler. This allows another method elsewhere to pass along a
received keyboard event for evaluation without having this method
attached to a listener. Once it checks to see if the key pressed is an
alphabetic character or Backspace it updates itself accordingly. It
does not validate the answer further, but it does return true if a let-
ter was entered and false if any other key was pressed. The activate
and deactivate methods simply toggle between two different frames
to show the tile as a usable square or a blank.

 The constructor for the class will build the tile based on the
character it is given to display. Remember how we denoted a
blanked-out space with an underscore in the XML? We’ll defi ne
a constant property named EMPTY for this character so we can
easily reference it (and even change it later if need be):
 static public const EMPTY:String = “ _ ” ;

 public function CrosswordTile(letter:String = EMPTY) {
 this.letter = letter;
 addEventListener (Event.ADDED_TO_STAGE, init, false, 0, true);
 if (letter = = EMPTY) {
 deactivate();
 } else {
 activate();
 }
 }

 protected function init(e:Event) : void {
 if (letterField) {
 letterField.text = “ ” ;
 letterField.mouseEnabled = false;
 }
 if (wordField) {
 wordField.text = (_wordIndex) ? _wordIndex.toString() :
 “ ” ;
 wordField.mouseEnabled = false;
 }
 }

Chapter 9 XML AND DYNAMIC CONTENT 137

 All the constructor does is store the letter passed in, set up a
notifi cation for when the tile is added to the display list, and tog-
gle to the normal state or the blacked-out state. The init method
handles setting up the text fi elds and disables mouse interaction
on them. To some, these may seem like steps that could simply be
accomplished in the constructor, but unfortunately this is not the
case. If you tried to move them into the constructor, Flash would
give you a runtime error. This is a point of confusion for many
people and one we will explore further in Chapter 10. Suffi ce it
to say that, while we’ve declared that there will be two text fi elds,
we’re going to create these objects inside of Flash. As long as we
give the same name to our text fi eld instances on the Stage, Flash
will take care of linking the declared variable to the actual object.
However, this step does not take place until after the constructor
has completed, so the next best time to run these commands is
when the tile is added to the Stage and ready to use.

 Now that we have the class defi ning a tile created, we need
to see the display object to which it will be linked. Open up the
CrosswordPuzzle.fl a fi le from the Chapter 9 Examples folder
on the website. In the library you will fi nd a symbol called
CrosswordTile. If you open it you will see the two text fi elds (with
the names of the variables in the class) and the two frames show-
ing the different states a tile can use. If you bring up the proper-
ties panel for the symbol (right-click and choose Properties),
you will see that it is set to export with the same name as the
class we’ve just created. Now when a new CrosswordTile is con-
structed, this library asset will be used as the object to display .

 Figure 9.3 The CrosswordTile symbol is now linked to its class.

 Figure 9.2 The CrosswordTile
symbol is made up of a square
and two text fi elds.

W
20

W
20

138 Chapter 9 XML AND DYNAMIC CONTENT

 The CrosswordClue Class
 Before we delve into building the puzzle itself, let’s consider the

clue component. It is a relatively simple class — all it needs to do is
display the clue for the selected word. With no need for multiple
frames, it is a good candidate to extend Sprite instead of MovieClip:
 package {

 import fl ash.display.Sprite;
 import fl ash.text.TextField;

 public class CrosswordClue extends Sprite {

 static public const DEFAULT_VALUE:String = “ Clue ” ;

 public var clueText:TextField;

 public function CrosswordClue() {
 }

 public function get text():String {
 return clueText.text;
 }

 public function set text(value:String):void {
 clueText.text = value;
 }
 }
 }

 The class uses a TextField object and a getter/setter combination
to assign text to it. You might wonder why we didn’t simply use a
standard text fi eld instead of a custom class. You very well could for
an example as straightforward as this, but there are a couple of rea-
sons to encapsulate it as its own class. First is the ability to defi ne
constants, such as what the default value of the text fi eld should be
when no clue is shown. Another reason is expandability and fl ex-
ibility; by already having a class set up to handle the clue, it will be
easier to add animation and other features without adding a lot of
code to the puzzle class. One other reason you might not expect is
that it is easier to set up a text fi eld inside Flash rather than code.
Custom fonts (basically, anything other than system fonts) are
clumsily handled through ActionScript and require more hassle
than simply creating a symbol with a TextField object inside it and
linking it to a class. In fact, spawning a new TextField from scratch
in code and assigning it formatting objects and positioning involve
as much or more code than the class we just created.

 In the CrosswordPuzzle.fl a fi le you’ll fi nd a symbol in the
library named CrosswordClue. Inside it has the single TextField
named clueText. It is set to export using the same class name,
and is extending from the base class Sprite. You may have some
cognitive dissonance when you see that the base class fi eld says
Sprite, but the type still says MovieClip. This has to do with the
way the Flash authoring environment handles timeline-based
elements and is a holdover from older versions, presumably for

Chapter 9 XML AND DYNAMIC CONTENT 139

 consistency. To minimize confusion (or perhaps add to it), Flash
CS4 now color-codes Sprites in the library as green instead of the
MovieClip blue. Don’t dwell too much on it — it’s a quirk of Flash
and while annoying does not cause any real problems.

 Figure 9.4 The CrosswordClue class extends Sprite, even though it says MovieClip in
the Symbol Properties window.

 The CrosswordPuzzle Class
 With the individual tiles and the clue fi eld ready to be used, it’s

time to set up the core CrosswordPuzzle engine. Unlike the two
previous components, we will not link this class to a symbol in the
library. Because crossword puzzles can be any number of sizes, hav-
ing any type of fi xed layout defi ned in a symbol would make the
class too rigid to deal with. Say, for instance, you wanted to sup-
port multiple dimensions of puzzles in a single game; if you tied
the class to specifi c symbols, you would need to do so as the base
class and have multiple subclasses that extend CrosswordPuzzle,
which could get cumbersome quickly. It is easier to set up the puz-
zle dynamically based on the puzzle data. Like the CrosswordClue
class, CrosswordPuzzle extends Sprite; since it is being generated
dynamically it will not use frames.

 package {

 import fl ash.display.Sprite;
 import fl ash.geom.ColorTransform;
 import fl ash.geom.Point;
 import fl ash.events.Event;
 import fl ash.events.MouseEvent;
 import fl ash.events.KeyboardEvent;
 import fl ash.ui.Keyboard;

140 Chapter 9 XML AND DYNAMIC CONTENT

 public class CrosswordPuzzle extends Sprite {

 }
 }

 In the basic package defi nition, we will need to be able to lis-
ten for both Keyboard and Mouse events, and we will use the
ColorTransform class (the code version of the Color proper-
ties drop-down on a timeline-based symbol) to tint tiles that are
selected. Next we defi ne the constants and properties of the class,
as well as the constructor:

 // CLASS CONSTANTS
 static public const tileSelectedColor:ColorTransform = new
ColorTransform(0, 1, 1, 1, 0, 0, 0, 0);
 static public const wordSelectedColor:ColorTransform = new
ColorTransform(.7, 1, 1, 1, 0, 0, 0, 0);

 // PROTECTED VARIABLES
 protected var _content:XML;
 protected var _puzzleHeight:int;
 protected var _puzzleWidth:int;
 protected var _tileList:Array;
 protected var _wordListAcross:Array;
 protected var _wordListDown:Array;
 protected var _selectedWord:Array;
 protected var _selectedTile:CrosswordTile;
 protected var _crosswordClue:CrosswordClue;

 public function CrosswordPuzzle(content:XML) {
 _content = content;
 _tileList = new Array();
 _wordListAcross = new Array();
 _wordListDown = new Array();
 createPuzzle();
 }

 To tint a tile when it is selected, we create two color transforms
(in this case, versions of light blue). One is used for the specifi c
tile that was selected and a lighter one will be used for the word
associated with that tile. The engine employs a number of vari-
ables to keep track of various pieces of data. The _content XML
variable will store the puzzle data once it is loaded from an exter-
nal fi le. It also keeps track of the width and height of the puzzle, a
list of all the tiles in play (including blacked-out ones), lists of the
horizontal and vertical words, references to the currently selected
tile and word, and a reference to the CrosswordClue class we cre-
ated earlier. Finally, the constructor accepts an XML object con-
taining the puzzle content as a parameter. It then initializes the
three lists and calls createPuzzle, which we will look at next:

 protected function createPuzzle() {
 _puzzleWidth = _content.@width;
 _puzzleHeight = _content.@height;
 var totalWords:int = 1;

Chapter 9 XML AND DYNAMIC CONTENT 141

 var tile:CrosswordTile;
 //SETUP TILES
 for (var i:int = 0; i < _puzzleHeight; i + +) {
 for (var j:int = 0; j < _puzzleWidth; j + +) {
 var letter:String = _content.puzzle.row[i].charAt(j);
 tile = new CrosswordTile(letter);
 tile.name = j.toString() + “ _ ” + i.toString();
 tile.tileIndex = new Point(j, i);
 if (letter ! = CrosswordTile.EMPTY) {
 var startofWord:Boolean = false;
 if (j = = 0 || _content.puzzle.row[i].charAt(j-1) = = “ _ ”) {
 tile.acrossIndex = _wordListAcross.push(new Array());
 _wordListAcross[tile.acrossIndex-1].push(tile);
 startofWord = true;
 }
 if (i = = 0 || _content.puzzle.row[i-1].charAt(j) = = “ _ ”) {
 tile.downIndex=_wordListDown.push(new Array());
 _wordListDown[tile.downIndex-1].push(tile);
 startofWord = true;
 }
 if (startofWord) {
 tile.wordIndex = totalWords + + ;
 }
 if (tile.acrossIndex < 0) {
 var previousAcrossTile:CrosswordTile = _
tileList[_tileList.length-1];
 _wordListAcross[previousAcrossTile.
acrossIndex-1].push(tile);
 tile.acrossIndex = previousAcrossTile.
acrossIndex;
 }
 if (tile.downIndex < 0) {
 if (i > 0) {
 var previousDownTile:CrosswordTile = _
tileList[_tileList.length-_puzzleWidth];
 if (previousDownTile.letter ! =
CrosswordTile.EMPTY) {
 _wordListDown[previousDownTile.downIndex-1].push(tile);
 tile.downIndex = previousDownTile
.downIndex;
 }
 }
 }
 }
 _tileList.push(tile);
 tile.x = j * tile.width;
 tile.y = i * tile.height;
 addChild(tile);
 tile.addEventListener(MouseEvent.CLICK, selectTile,
false, 0, true);
 }
 }
 _crosswordClue = new CrosswordClue();
 _crosswordClue.y = getRect(this).bottom + 20;
 addChild(_crosswordClue);
 }

142 Chapter 9 XML AND DYNAMIC CONTENT

 There is a lot to the createPuzzle method, so we’ll break it down
into more manageable chunks.

 _puzzleWidth = _content.@width;
 _puzzleHeight = _content.@height;
 var totalWords:int = 1;
 var tile:CrosswordTile;

 The fi rst few lines simply initialize the variables that will be used
throughout the rest of the method. Note that the attributes we
assigned to the crossword XML earlier are prefi xed with the @ sym-
bol. Another great feature of E4X is that it is smart enough to dif-
ferentiate numbers from strings, so even though the values were in
quotes in the XML fi le, Flash converted them to numbers for us.

 for (var i:int = 0; i < _puzzleHeight; i + +) {
 for (var j:int = 0; j < _puzzleWidth; j + +) {
 var letter:String = _content.puzzle.row[i].charAt(j);
 tile=new CrosswordTile(letter);
 tile.name = j.toString() + “ _ ” + i.toString();
 tile.tileIndex = new Point(j, i);

 Next we begin two for loops that will run through the entire grid
of the puzzle, row by row. Each iteration identifi es the letter used
at that space in the grid and creates a new CrosswordTile object
for each one. As you can see, to get down to a specifi c row in the
puzzle node of the XML, we simply use a combination of dot and
array syntax. When you have multiple nodes on the same level
with the same name, Flash converts it into an XMLList object, sort
of like an XML array. To get at a particular item in the XMLList, we
use a number from 0 up to the number of items minus 1.

 if (letter ! = CrosswordTile.EMPTY) {
 var startofWord:Boolean = false;
 if (j = = 0 || _content.puzzle.row[i].charAt(j-1) = =
CrosswordTile.EMPTY) {
 tile.acrossIndex = _wordListAcross.push(new Array());
 _wordListAcross[tile.acrossIndex-1].push(tile);
 startofWord = true;
 }
 if (i = = 0 || _content.puzzle.row[i-1].charAt(j) = =
CrosswordTile.EMPTY) {
 tile.downIndex = _wordListDown.push(new Array());
 _wordListDown[tile.downIndex-1].push(tile);
 startofWord = true;
 }
 if (startOfWord) {
 tile.wordIndex = totalWords + + ;
 }
 if (tile.acrossIndex < 0) {
 var previousAcrossTile:CrosswordTile = _tileList[_tileList.

length-1];
 _wordListAcross[previousAcrossTile.acrossIndex-1].push(tile);
 tile.acrossIndex = previousAcrossTile.acrossIndex;
 }

Chapter 9 XML AND DYNAMIC CONTENT 143

 if (tile.downIndex < 0) {
 var previousDownTile:CrosswordTile = _tileList[_tileList.
length-_puzzleWidth];
 _wordListDown[previousDownTile.downIndex-1].push(tile);
 tile.downIndex = previousDownTile.downIndex;
 }
 }

 This section of the method performs a series of checks to
determine the tile’s current state (in-use or blacked-out) and the
words with which it is associated. First we check whether or not
the tile is supposed to be empty. If it is, we stop there and don’t
include it in any word lists. Next, we determine whether the tile is
the starting letter of a word, either across or down. We ascertain
this by checking if the tile immediately to the left or top of the
current tile is a blank. If it is the start of a new word, we add it
to the across list and/or the down list. We also increment the
total number of words counter and set the tile’s wordIndex to
this number. If you recall from the CrosswordTile class, when the
wordIndex is set, it adds this number to the upper-left-hand cor-
ner TextField. This is the number that will be used to match the
tile to its corresponding clue. If the tile is not the start of a word,
its acrossIndex and downIndex will still be the default value
of � 1. We then look up the previous tile to both the left and above
the tile to use its same indices and add it to the across list, down
list, or both. At this point the tile shares associations with words
in the across word list, down word list, and the beginning letter of
each word.

 _tileList.push(tile);
 tile.x = j * tile.width;
 tile.y = i * tile.height;
 addChild(tile);
 tile.addEventListener(MouseEvent.CLICK, selectTile, false, 0, true);
 }
 }
 _crosswordClue = new CrosswordClue();
 _crosswordClue.y = getRect(this).bottom + 20;
 addChild (_crosswordClue);

 Once all the logic has run to determine each tile’s link to its
neighbors, we add it to the master tile list, position it based on
its location in the letter grid, add it to the Stage, and attach a
listener for mouse clicks. To end this method after the loop
has completed processing all the tiles, we add the previously
created CrosswordClue component to the Stage and position
it underneath the rest of the puzzle with a little bit of white space.
A complete crossword puzzle should now exist on the Stage
with all the proper squares blacked-out and certain tiles assigned
clue numbers. You may have noticed that the method attached to

144 Chapter 9 XML AND DYNAMIC CONTENT

 the mouse listener for each tile is called selectTile . We will examine
it next:

 protected function selectTile(e:MouseEvent):void {
 var tile:CrosswordTile = e.target as CrosswordTile;
 var acrossWord:Array = _wordListAcross[tile.acrossIndex-1];
 var downWord:Array = _wordListDown[tile.downIndex-1];
 clearSelection();
 if (tile.letter = = CrosswordTile.EMPTY) {
 _crosswordClue.text = CrosswordClue.DEFAULT_VALUE;
 stage.removeEventListener(KeyboardEvent.KEY_DOWN,
keyDown);
 _selectedTile = null;
 return;
 }
 if (!_selectedTile) stage.addEventListener(KeyboardEvent.
KEY_DOWN, keyDown, false, 0, true);
 if (_selectedWord = = acrossWord & & _selectedTile = = tile)
_selectedWord = downWord;
 else if (_selectedWord = = downWord & & _selectedTile = =
tile) _selectedWord = acrossWord;
 else if (_selectedWord = = acrossWord & & _selectedTile ! =
tile) _selectedWord = acrossWord;
 else if (_selectedWord = = downWord & & _selectedTile ! =
tile) _selectedWord = downWord;
 else _selectedWord = acrossWord;
 for (var i:int = 0; i < _selectedWord.length; i + +) {
 if (_selectedWord[i] = = tile) {
 _selectedWord[i].transform.
colorTransform = tileSelectedColor;
 } else {
 _selectedWord[i].transform.
colorTransform = wordSelectedColor;
 }
 }
 _selectedTile = tile;
 var wordNumber:int = _selectedWord[0].wordIndex;
 if (_selectedWord = = downWord) {
 crosswordClue.text = String(wordNumber) + “ Down: ” + (
content.clues.down[tile.downIndex-1] || “ ”);
 } else {
 crosswordClue.text = String(wordNumber) + “ Across: ” + (
content.clues.across[tile.acrossIndex-1] || “ ”);
 }
 }

 The selectTile method is called when the player clicks a tile.
To provide the expected user feedback, this method needs to:
(1) highlight the selected tile, (2) highlight the word the tile is a part
of, and (3) display the hint associated with the tile. First, we look
up the across and down words the tile is associated with and then
call clearSelection , which we will look at shortly. Suffi ce it to say
for now that clearSelection will nullify any other currently selected
tiles. Next we check to see if the player clicked on a blacked-out

Chapter 9 XML AND DYNAMIC CONTENT 145

 tile; if so, we clear the clue text, disable keyboard input if it is
active, and exit the function. If the _selectedTile property is null,
meaning no tile was previously selected, we add a listener for key-
board input so players can start to type letters once they click a tile.
We now need to know whether to use the tile’s associated across or
down word. By default, if no previous word was selected, we use
the tile’s across word. We use many conditions to ensure that if
a tile is selected as part of a down word, and another tile in that
word is clicked, the game will keep the same word selected. We
check to see if the same tile was clicked twice; if it was, we want to
select the opposite type of the word that is currently selected. For
example, if an across word is selected by its fi rst letter, clicking the
fi rst letter again will highlight the down word.

 Once we have determined the proper word to select, we run
through a for loop that assigns the color transforms we created
earlier to each of the tiles in the word. Now all that is left to do is
display the clue for the word; to do this we grab the wordIndex of
the fi rst tile in the word. Finally, we concatenate a string together
with the word descriptor (“ 1 Down, ” “ 30 Across, ” etc.) and the
clue itself, pulled from the corresponding XMLList.

 Now that we have the behavior defi ned for when the player
selects a tile, we need some way of deselecting tiles and words,
like when the player clicks on a blacked-out tile. That’s where the
 clearSelection method comes into play:

 protected function clearSelection():void {
 if (!_selectedWord) return;
 for (var i:int = 0; i < _selectedWord.length; i + +) {
 _selectedWord[i].transform.colorTransform = new ColorTransform();
 }
 }

 All this method does is reset the color transforms for the tiles
in the currently selected word. If no word has been selected when
the method is called, it exits. Note that we do not null out the
variables _selectedTile and _selectedWord . This is because we may
need to know what the previously selected word was. In fact, the
 selectTile method relies on knowing the previously selected word
to fulfi ll all of its conditions. Now that we have methods to set up
a puzzle and select specifi c tiles in it, we need one more method
to insert letters into the tiles. If you recall in the selectTile method,
we set up a keyboard event listener when a tile is successfully
selected. This method, keyDown , is what we’ll look at next:

 protected function keyDown(e:KeyboardEvent):void {
 var selectedIndex:int = (_selectedTile.tileIndex.y * _puzzleWidth) +
 _selectedTile.tileIndex.x;
 var newIndex:int;
 switch (e.keyCode) {

146 Chapter 9 XML AND DYNAMIC CONTENT

 case Keyboard.UP:
 newIndex = Math.max(0, selectedIndex-_puzzleWidth);
 if (_tileList[newIndex].letter ! = CrosswordTile.EMPTY)
_tileList[newIndex].dispatchEvent(new MouseEvent(MouseEvent.CLICK));
 break;
 case Keyboard.DOWN:
 newIndex = Math.min(_tileList.length-1, selectedIndex +
 _puzzleWidth);
 if (_tileList[newIndex].letter ! = CrosswordTile.EMPTY) _
tileList[newIndex].dispatchEvent(new MouseEvent(MouseEvent.CLICK));
 break;
 case Keyboard.LEFT:
 newIndex = Math.max(selectedIndex-1, (_selectedTile.tileIndex.y
* _puzzleWidth));
 if (_tileList[newIndex].letter ! = CrosswordTile.EMPTY) _
tileList[newIndex].dispatchEvent(new MouseEvent(MouseEvent.CLICK));
 break;
 case Keyboard.RIGHT:
 newIndex = = Math.min(selectedIndex + 1,
((_selectedTile.tileIndex.y + 1) * _puzzleWidth)-1);
 if (_tileList[newIndex].letter ! = CrosswordTile.EMPTY)
_tileList[newIndex].dispatchEvent(new MouseEvent(MouseEvent.CLICK));
 break;
 case Keyboard.SPACE:
 _selectedTile.dispatchEvent(new MouseEvent(MouseEvent.CLICK));
 break;
 default:
 _selectedTile.setAnswer(e);
 break;
 }
 }

 The keyDown method is responsible for handling a few dif-
ferent types of keyboard input. We employ a switch statement to
fi lter through the possible values for the key that was pressed.
In addition to responding to alphabetic key presses, we want to
give the player the ability to move between different tiles with
the arrow keys, as well as the ability to toggle between the across
and down words of the selected tile. For the arrow key input, if
a tile in the direction in which the player is attempting to move
isn’t blacked out, we simulate a mouse click by dispatching a new
 MouseEvent from the tile. The result is that it is as though the tile
next to the selected tile was clicked with the mouse and selectTile
is called to handle it. By simulating already existing functionality,
we lessen the possibility for bugs, since the logic on how to select
words based on tiles is centralized in one place. The same is true
for the spacebar; when it is pressed it is as though the selected
tile was simply clicked again. For all other keys, we send the event
through to the setAnswer method of the tile. If you recall, that
method knows how to fi lter for proper alphabetic input, so we
don’t have to worry about that here.

 All of our classes for the crossword puzzle engine are now
defi ned; let’s try it out. If you open the CrosswordPuzzle.fl a in

Chapter 9 XML AND DYNAMIC CONTENT 147

 the Chapter 9 folder, you will fi nd the following code on the fi rst
frame:

 var loader:URLLoader = new URLLoader(new URLRequest(“ crossword.
xml ”));
 loader .addEventListener(Event.COMPLETE, createCrossword);

 var cp:CrosswordPuzzle;

 function createCrossword(e:Event) {
 cp=new CrosswordPuzzle(XML(e.target.data));
 cp.x=stage.stageWidth/2-cp.width/2;
 cp.y=cp.x;
 addChild(cp);
 }

 This little snippet of code handles loading in the XML fi le with all
the crossword data and creates a new CrosswordPuzzle instance with
it. Finally, it centers the puzzle horizontally on the Stage and adds it to
the display list. This code could easily be integrated into a larger class
that handles, for instance, the loading of multiple puzzles.

 Figure 9.5 The fi nished crossword puzzle engine, running with the sample puzzle.

148 Chapter 9 XML AND DYNAMIC CONTENT

 The resulting SWF for the whole crossword engine is just under
15 k — pretty small for a lot of functionality. Using a device, or sys-
tem, font for the tiles would bring it down even further, because
at least half of the fi le is font data.

 Content Is a Two-Way Street: A Crossword
Builder

 While editing an XML fi le by hand is certainly not impossible,
it would get grueling pretty quickly to have to create entire cross-
word puzzles that way. This is where an editor comes into play.
Using the same core components, like the tile class and much of
the puzzle class, you can take the crossword engine and write a
second version of it that outputs the XML fi le and even saves it to
a local fi le. While we won’t build an entire editor here, this is what
a savePuzzle method might look like for such an app:

 protected function savePuzzle(e:Event = null) {
 _content = new XML(< crossword width = { _puzzleWidth }
height = { _puzzleHeight } > < puzzle/ > < clues/ > < /crossword >);
 for (var i:int=0; i < _tileList.length; i + = _puzzleWidth) {
 var slice:Array = _tileList.slice(i, i + _puzzleWidth-1);
 var str:String = “ ” ;
 for (var j:int = 0; j < slice.length; j + +) {
 if (slice[j].letter = = “ ”) str + = CrosswordTile.EMPTY;
 else str + = slice[j].letter;
 }
 var row:XML = new XML(< row > { str } < /row >);
 _content.puzzle.appendChild(row);
 }
 for (i = 0; i < _acrossClues.length; i + +) {
 var across:XML = new XML(< across > { _acrossClues[i] } < /across >);
 _content.clues.appendChild(across);
 }
 for (i = 0; i < _downClues.length; i + +) {
 var down:XML = new XML(< down > { _downClues[i] } < /down >);
 _content.clues.appendChild(down);
 }
 var fi le:FileReference = new FileReference();
 fi le.save(_content, “ crosssword.xml ”);
 }

 When creating XML within ActionScript, you don’t have to
enclose it in “ { } ” or convert it from a string. You simply start typing
it, hence the one line to create the _content container for the XML.
To insert ActionScript values in the midst of raw XML, simply
use braces ({ }) around whatever expression you need evaluated.
In this case, the fi rst line creates the main nodes with the puz-
zle width and height attributes and two child nodes: puzzle and
clues. It then runs through the tile list and builds all the rows for
the puzzle. The appendChild method is called, which adds each

Chapter 9 XML AND DYNAMIC CONTENT 149

 row to the bottom of the puzzle XMLList, like a push to an array.
After that, the across and down clues are iterated and appended,
as well. Finally, a new feature in Flash CS4, the FileReference save
method, is called. It brings up a system fi le dialogue window and
saves the XML as text data to the fi le selected. The second param-
eter is only a suggestion; end users can select whatever fi le name
they want.

 Sending Data Back Out
 While the local fi le saving abilities in the FileReference class are

great, the real power comes from saving data to a remote destina-
tion, like a database. Data such as high-score leaderboards, user
profi les, and more are all great candidates for XML formatting.
To get the information to the database, it must get sent through
some data processing (or middleware) layer, like WebServices,
AMF (Remoting), or standard form posts. Here is a quick example
of what the latter might look like, simply posting the raw XML to
a receiving PHP page:

 var myXML:XML = < crossword width = “ 10 ”
height = “ 10 ” > < puzzle/ > < clues/ > < /crossword > ;
 var request:URLRequest = new URLRequest(“ myservice.php ”);
 request .contentType = “ text/xml ” ;
 request .data = myXML.toXMLString();
 request .method = URLRequestMethod.POST;
 var loader:URLLoader = new URLLoader(request);

 Just as the URLLoader is the core class for loading remote data
into Flash, it is also the sending mechanism when combined with
a data-laden URLRequest. In this example, we simply format the
request to notify the receiving page that it contains incoming
XML content. Of course, sending the XML in its raw form like this
is not particularly secure — most any savvy hacker will be able to
use any number of HTTP monitoring tools to see the XML being
sent (or any being received for that matter). For some data, like
public high-score tables, this won’t matter; however, more sensi-
tive data such as user information should be hidden. We’ll explore
ways to overcome this security defi ciency in Chapter 18.

 One More Example: XML vs. Flash Vars
 A popular way of getting information into a SWF fi le from its

containing HTML page is through the use of Flash Vars. If you’re
not familiar with them, Flash Vars are essentially name/value pairs
that are passed into the SWF upon loading. Say you had a site
where users could log in and you wanted to display a player’s name
inside the game. A traditional solution to this problem would be

150 Chapter 9 XML AND DYNAMIC CONTENT

 to add the username to the object and embed tags in the HTML
page. It would look something like this:

 < object classid = “ clsid:d27cdb6e-ae6d-11cf-96b8-444553540000 ”
codebase = “ http://download.macromedia.com/pub/shockwave/cabs/
fl ash/swfl ash.cab#version = 10,0,0,0 ” width = “ 500 ” height = “ 600 ”
id = “ CrosswordPuzzle ” align = “ middle ” >
 <param name = “ allowScriptAccess ” value = “ sameDomain ” / >
 <param name = “ allowFullScreen ” value = “ false ” / >
 <param name = “ movie ” value = “ CrosswordPuzzle.swf ” / >
 <param name = “ quality ” value = “ high ” / >
 <param name = “ bgcolor ” value = “ #ffffff ” / >
 <param name = “ fl ashvars ” value = “ username = = Chris ” / >
 < embed src = “ CrosswordPuzzle.swf ” quality = “ high ”
bgcolor = “ #ffffff ” width = “ 500 ” height = “ 600 ”
name = “ CrosswordPuzzle ” align = “ middle ” allowScriptAccess =
“ sameDomain ” allowFullScreen = “ false ” type = “ application/
x-shockwave-fl ash ” pluginspage = http://www.adobe.
com/go/getfl ashplayer
 fl ashvars = “ username = Chris ” / >
 < /object >

 If you have multiple pieces of information you need to pass
into Flash, they are separated by & ’s, just like a URL in a browser.
There are a couple of drawbacks to using this system that become
very apparent when you start using more than one or two vari-
ables. One is that you’re limited to only single name/value pairs;
you can’t store any type of complex data in a Flash Var. The other
drawback is that it becomes tricky to manage them in the page
and one typo or error processing them could render all of them
unavailable. To add to their annoyance during troubleshooting,
any special characters must be URL encoded, increasing their
lack of readability.

 A better option is to use a single Flash Var, maybe called some-
thing like confi g . The value of this variable is a path to either a static
or dynamic XML fi le. It would probably look something like this:

 < param name = “ fl ashvars ” value = “ confi g = confi guration.xml ” / >

 If the information contained within the XML fi le didn’t need to
change per user (like the links to various pages or media), it could
simply be a fi le on the server beside your SWF that the SWF loads
in upon launching. If the information was dynamic (like a user-
name or preferences), it could point to a PHP (or other back-end
service) fi le that returns XML:

 < param name = “ fl ashvars ” value = “ confi g = confi guration.php ” / >

 The URLLoader will load in the data as plain text, regardless
of fi le extension, so as long as the page renders out as XML you’re
good to go. This keeps your back-end developers (or you if you’re a
solo operation) from having to wrangle variables within a page of

Chapter 9 XML AND DYNAMIC CONTENT 151

 already convoluted HTML. Here is an example of what a confi g
fi le might look like:

 < confi g >
 < mediaPath > http://www.mydomain.com/media / < /mediaPath >
 < serviceURL > http://www.mydomain.com/services / < /serviceURL >
 < userName > Chris < /userName >
 < /confi g >

 Remember that you could put whatever information you
wanted to in here and in whatever structure. As you can see, this
much more readable option is also easier to parse, and thanks
to E4X your basic data types (like strings and numbers) come
through intact; Flash Vars are all strings.

 Summary
 In this chapter we’ve explored a few uses of XML in games.

There are defi nitely many more. Some developers I’ve met are
wary of using XML, feeling that doing so forces them to use an
elaborate, complex setup or follow some “ best practices ” guide
to formatting they read in a 500-page tome on XML in an enter-
prise setting. Nothing could be further from the truth; use XML
where it makes sense, keep it simple, and try to follow a structure
that lends itself to growth. The great thing about XML is that it is
a standard in and of itself, and ActionScript 3 makes working with
it a no-brainer.

This page intentionally left blank

153
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 FOUR LETTER WORDS: M-A-T-H

 Few people I know, programmers included, don’t groan a little
when math and physics are brought up. While not all games utilize
them, geometry, trigonometry, and basic physical mechanics are
essential parts of game development. Don’t worry, though; this isn’t
a physics and math book. There are many of those out in the mar-
ketplace already, some even written specifi cally for games. In fact,
this isn’t even going to be an in-depth exploration of those topics
because they really aren’t necessary for most casual games. In this
chapter, we will cover the basic foundational concepts you must
understand to be able to handle a wide variety of development chal-
lenges. We will accomplish this in two parts — geometry and trigo-
nometry, and physics — each with a practical example illustrating
the concepts. If, when you’re done with this chapter, your appetite
is whetted for a more in-depth look at these topics, I have provided
links to further reading on this book’s website, fl ashgamebook.com.

 The Math Class
 ActionScript includes a core library for performing a lot of the

functions we’re going to learn about in this chapter. It is the Math
class, and it will quickly become invaluable as we get into more
complicated problems later on in our code. It doesn’t include
everything we’ll eventually need, but later we’ll learn about some
companion functions we can write to make it even more useful.

 PART 1
 Geometry and Trigonometry

 Geometry , specifi cally Euclidian geometry, is the branch of
mathematics that deals with, among other things, the relationship

 10

154 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 between points, lines, and shapes in a space. From it we derive
the formulas for getting the distance between two points, as well
as the entire x , y coordinate system (known as the Cartesian coor-
dinate system) upon which Flash’s Stage is built. Figure 10.1 illus-
trates a typical two-dimensional coordinate system.

 Flash ’s coordinate system is slightly different in that it is fl ipped
over the x -axis, resulting in the y values being reversed. The upper-
left corner of the Stage is at (0,0) and expands down and to the
right from there, as shown in Figure 10.2. This is important to note
because it is diametrically opposed to the notion that numbers
decrease as they move “ down ” on a graph, and it can cause confu-
sion later when we move into some of the concepts of physics.

 Figure 10.2 Flash’s vertically inverted coordinate
system.

 Figure 10.1 A standard two-dimensional Cartesian, or
x, y , coordinate system.

1

1

−1

−1

y

x

(0,0) 1

−1

−1

1 y

x

(0,0)

Flash Stage

 Trigonometry (or “ trig ” for short) is a related, but more specifi c,
branch that describes the relationships between the sides and angles
of triangles, specifi cally right triangles (triangles with one angle of 90
degrees). All triangles have some fundamental properties:

 ● A triangle’s interior angles always add up to 180 degrees.
 ● Any triangle (regardless of orientation and type) can be

split into two right triangles.
 ● The relationships between any given side and angle of a

triangle are defi ned by ratios that are known as the trigo-
nometric functions .

 You have probably heard of the three most common trig func-
tions; they are sine (sin), cosine (cos), and tangent (tan). They
each relate to different sides of a triangle. The longest side of the
triangle (and, in a right triangle, the side opposite the right angle)
is the hypotenuse (hyp). In Figure 10.3, we relate to the other two

 Figure 10.3 The three sides of a
right triangle, related to angle A .

hypotenuse

adjacent

op
po

si
te

A
90°

Chapter 10 FOUR LETTER WORDS: M-A-T-H 155

 sides of the triangle based on the angle we’re interested in — in
this case, A . The vertical side of the triangle is opposite (opp)
angle A , while the horizontal side is adjacent (adj) to it.

 The aforementioned trig functions work with these sides as
follows:

 ● The sine of an angle is equal to the opposite side’s length
divided by the hypotenuse’s length; thus, sin A � opp/hyp.

 ● The cosine of an angle is equal to the adjacent side’s length
divided by the hypotenuse’s length; thus, cos A � adj/hyp.

 ● The tangent of an angle is equal to the opposite side
divided by the adjacent site; thus, tan A � opp/adj.

 As you can see, these functions are very helpful if you only
know a little bit of information about a triangle and need to
determine the other components. Let’s look at a few examples. In
Figure 10.4, we know the value of angle A is 50 ° (and, by exten-
sion, the other missing angle would then be 40 °). We also know
that the length of the hypotenuse is 30.

 To fi nd the lengths of the other two sides, we rewrite the sine
and cosine equations as follows:

adj * hyp or adj *� �cos , (cos)A 50 30

 opp * hyp or opp * � �sin , (sin)A 50 30

 If you used a calculator with the trig functions on it, you would
quickly determine that the value of the adjacent side is � 19.3 and
the value of the opposite side is � 23.

 In Figure 10.5, we can see that we now know one angle (45 °)
and the length of the side opposite that angle (20).

 Once again, we simply manipulate the equations to determine
the other two sides, this time using tangent instead of cosine, as
cosine has nothing to do with the opposite side:

 hyp opp/sin , or hyp 20/(sin 45)� �A

 adj opp or adj� �/tan , /(tan)A 20 45

 Using a calculator, this would reveal the hypotenuse to have a
length of � 28.3 and the adjacent side to also be 20.

 Now let’s look at an example (Figure 10.6) with a triangle where
we know the lengths of the two shorter sides but no angles and
no hypotenuse.

 Because we know the opposite and adjacent sides, the obvious
choice would be to use the tangent equation to determine the
value of angle A (and fl ip the two sides to fi nd the value of B):

 tan /A � 15 20

 tan /B � 20 15

 Figure 10.4 Using the
information about one angle and
one side, we can use the trig
functions to fi nd the values of the
other two sides.

hypotenuse = 30

adjacent

op
po

si
te

A = 50°
90°

 Figure 10.5 A triangle where we
know one angle and one side.

hypotenuse

adjacent

op
po

si
te

 =
 2

0

A = 45°
90°

hypotenuse

adjacent = 20

op
po

si
te

 =
 1

5

A

B

90°

 Figure 10.6 A triangle where we
know just two of the sides, but no
angles and no hypotenuse.

156 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 However , now we’re stuck. We want A and B , not the tangent of
 A and B . Luckily, there is a way to reverse each trig equation using
what are known as inverse trig functions. The names of these
functions match their counterparts, but they are prefi xed with
the word arc . In this case, we need to use arctangent to fi nd the
value of each of these angles:

 A � arctan (/)15 20

 B � arctan (/)20 15

 Based on these equations, angle A would be � 37 ° and B would
equal � 53 ° . If you add these together with the right angle of 90 ° ,
you can see that we indeed have a proper triangle of 180 ° .

 For our fi nal theoretical example, look back again to Figure
10.6. Suppose all you needed was the hypotenuse and you
weren’t interested in the angles at all. You could do what we did
previously, using arctangent to get the values of the angles and
then use those angles with either sine or cosine to determine the
hypotenuse. However, as this is a multiple-step process, it is inef-
fi cient when we have a much quicker way. In addition to the stan-
dard trig functions, another equation, known as the Pythagorean
theorem, can be used to determine the third side of a right trian-
gle when you know the other two. It states that the hypotenuse of
a triangle, squared, is equal to the sum of the squares of the other
two sides. Let’s look at this as an equation, calling the two shorter
sides a and b and the hypotenuse c :

 a b c2 2 2� �

 To fi nd any one side when you know the other two is just a sim-
ple permutation of this equation, like the following:

 c a b b c a a c b� � � � � �(), (), ()2 2 2 2 2 2

 For our purposes, we know sides a and b are 15 and 20 (or 20
and 15; it doesn’t really matter). Based on these values, the hypot-
enuse would therefore be equal to:

 ()15 20 252 2� �

 Now that we have these functions defi ned and have seen how
to use them, let’s look at a couple of practical examples in Flash
and how to apply the functions there.

 A fairly common use of the trig functions is fi nding the angle
of the mouse cursor relative to another point. This angle can
then be applied to the rotation of a DisplayObject to make the
object “ look ” at the mouse. If you open the MousePointer.fl a fi le,

Chapter 10 FOUR LETTER WORDS: M-A-T-H 157

 on the website, you’ll fi nd just such an example set up. It consists
of a triangle MovieClip called “ pointer ” on the stage. One of the
corners of the triangle has been colored differently to differenti-
ate the direction it is pointing. For simplicity, the ActionScript to
perform this math is on the timeline; if you were using this code
as part of something larger, it would make sense to put it in a
class. Let’s look at this code now:

 addEventListener (Event.ENTER_FRAME, updatePointer, false, 0,
true);

 function updatePointer(e:Event) {
 var angle:Number = Math.atan2(mouseY–pointer.y, mouseX–
pointer.x);

 pointer.rotation = angle * (180/Math.PI);
 }

 On every frame (30 times a second at our current frame rate),
the angle of the pointer relative to the mouse position is updated.
There is a fair amount going on in these two lines so let’s look at
them one at a time:

 var angle:Number = Math.atan2(mouseY–pointer.y, mouseX–
pointer.x);

 Remember how we learned that if we know two sides of the tri-
angle we can use that information to fi nd out any of the angles?
In this case, we know the difference in x and y between the mouse
cursor and the pointer clip. These constitute the two shorter sides
of a right triangle — a straight line drawn between the pointer and
mouse would represent the hypotenuse of this triangle. This is
illustrated in Figure 10.7.

 A represents the angle we’re interested in, as we want the
pointer to basically “ look down ” the imaginary hypotenuse. This
makes the x distance the adjacent side to the angle and the y
distance the opposite side. Recall the formula for the tangent of
an angle: tan A � opp/adj. To determine A , we need to use the
arctangent formula A � arctan (opp/adj). In ActionScript there
are two ways to implement arctangent; they are the atan() and
atan2() methods of the Math class. The fi rst expects to receive
one value, assuming you have already divided the opposite side
by the adjacent. The second one performs this step for you and is
thus more commonly used (at least by me); pass it the opposite
side fi rst, followed by the adjacent side. In our case, the opposite
side is the y value of the mouse cursor minus the y position of the
pointer. Likewise, the adjacent side is the difference in x values
of the cursor and the pointer. We now have the angle represented
in Figure 10.7 by A ; however, this angle (and all angles returned
by the arc functions in ActionScript) is in radians , not degrees .
The rotation property of the pointer is assigned in degrees, so we
need to understand how to convert one unit to the other.

 Figure 10.7 The distance
between the mouse cursor and
the registration point of the
pointer clip form a triangle.

x

y

A°

158 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 A Quick Explanation of Radians and Pi
 You already know that a triangle is made up of 180 degrees and

that a circle is made up of 360 degrees, exactly double. A single
radian is the value of the angle created when a slice of the cir-
cumference of a circle is equal to the circle’s radius; Figure 10.8
helps illustrate this.

 If this explanation is confusing, don’t worry. A full understand-
ing of the use of radians is not necessary to perform the math
we need. In fact, there is a very handy constant in math that will
help us convert between radians and degrees. It is known as pi
(pronounced “ pie ”); it is represented by the symbol π and is a
nonrepeating decimal number approximately equivalent to 3.141.
It represents the number of radians in a triangle, or half the num-
ber of radians in a circle; therefore, 180 ° is equal to π radians. To
convert between radians and degrees, we simply multiply the
number of radians by 180/ π or the number of degrees by π /180.
Returning to our ActionScript example from above, the next line
of code does just that, using the Math.PI constant:

 pointer .rotation = angle * (180/Math.PI);

 If you test this FLA fi le you will see that the pointer consistently
points in the direction of your cursor as you move it around the
screen. Now that we have this piece of functionality in place, let’s
add a layer of complexity. Suppose in addition to “ looking at ” the
mouse we wanted the pointer to also move toward the mouse
until it reaches the mouse’s x and y position. If you open the
example MouseFollower.fl a , you’ll see how we can accomplish
this.

 Initially , this example looks very much like the last one,
except for a few extra lines of code. Let’s look at this additional
ActionScript now:

 var speed:Number = 5; //PIXELS PER FRAME

 addEventListener (Event.ENTER_FRAME, updatePointer, false, 0,
true);

 function updatePointer(e:Event) {
 var angle:Number = Math.atan2(mouseY-pointer.y, mouseX-
pointer.x);
 pointer.rotation = angle * (180/Math.PI);
 var xSpeed:Number = Math.cos(angle) * speed;
 var ySpeed:Number = Math.sin(angle) * speed;
 if (Math.abs(mouseX-pointer.x) > Math.abs(xSpeed))
pointer.x + = xSpeed;
 if (Math.abs(mouseY-pointer.y) > Math.abs(ySpeed))
pointer.y + = ySpeed;
 }

 The fi rst line we’ve added is a speed component. This defi nes
how many pixels the pointer should move per frame, in this case 5.

 Figure 10.8 When the length of
an arc on a circle is equal to the
circle’s radius, the value of the
angle formed is one radian.

arc length = radius

1 radian

radius

Chapter 10 FOUR LETTER WORDS: M-A-T-H 159

 In the updatePointer function, we’ve also added a few lines to
perform this move. Since the speed is how many pixels we want
to move in a straight line, we need to convert it into the amount
we need to move on the x -axis and the y -axis. In order to do this,
we need to think of the speed as the hypotenuse of an imagi-
nary triangle. We also already know the angle of the triangle we’re
interested in, because we just used arctangent to solve it. With
this information in hand, we can use the sine and cosine func-
tions to fi nd the adjacent and opposite sides of this triangle, or
the x and y components, respectively:

 var xSpeed:Number = Math.cos(angle) * speed;
 var ySpeed:Number = Math.sin(angle) * speed;

 Once we have these two speeds, we can simply apply them
to the x and y positions of the pointer to move it. In its simplest
form, that code would look like this:

 Poin ter.x + = xSpeed;
 pointer .y + = ySpeed;

 However , if you were to leave the code like this, you would fi nd
that the pointer would start to move erratically when it got very
close to the mouse. This is because, in trying to get as close to the
cursor as possible, it continues to “ jump over ” its target and will
appear to bounce back and forth endlessly. To circumvent this
behavior, we need to check to see if the pointer is close enough to
the mouse that it can stop moving. Doing so will employ another
method of the Math class, abs(). This method is known in English
as the absolute-value function . When given a number, either posi-
tive or negative, it returns the unsigned value of that number:
Math.abs(4) � 4, Math.abs(� 7) � 7, etc. In our example, we want
to know if the distance between the cursor and the pointer is
greater than the distance the pointer is trying to travel. Since we
can’t know whether or not the cursor’s position minus the point-
er’s position will result in a negative number, we use the absolute
value of the number for our calculation to ensure it is always posi-
tive. We also apply the function to the xSpeed and ySpeed variables
because there are situations where they could be negative, as well:

 if (Math.abs(mouseX–pointer.x) > Math.abs(xSpeed))
pointer.x + = xSpeed;
 if (Math.abs(mouseY–pointer.y) > Math.abs(ySpeed))
pointer.y + = ySpeed;

 If you compile the SWF you will see that this code causes the
pointer to follow the mouse around the screen, always pointing
toward it. While this logic is not what most people would consider
 intelligence , it is a form of artifi cial intelligence (AI).

 Let ’s look at one more example that will give the pointer a lit-
tle more personality. Open Mouse Follow Distance.fl a to follow

160 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 along. Continuing our previous examples, we once again have a
clip named pointer and some code in the fi rst frame. However,
instead of constantly following the cursor, the pointer will only
pursue the mouse when it is within a certain distance:

 var speed:Number = 5; //PIXELS PER FRAME
 var interestDistance:Number = 150; //PIXELS

 addEventListener (Event.ENTER_FRAME, updatePointer, false, 0, true);

 function updatePointer(e:Event) {
 if (getDistance(mouseX, mouseY, pointer.x, pointer.y) >
interestDistance) return;
 var angle:Number = Math.atan2(mouseY–pointer.y, mouseX–
pointer.x);
 pointer.rotation = angle * (180/Math.PI);
 var xSpeed:Number = Math.cos(angle) * speed;
 var ySpeed:Number = Math.sin(angle) * speed;
 if (Math.abs(mouseX–pointer.x) > Math.abs(xSpeed))
pointer.x + = xSpeed;
 if (Math.abs(mouseY–pointer.y) > Math.abs(ySpeed))
pointer.y + = ySpeed;
 }

 function getDistance(x1:Number, y1:Number, x2:Number, y2:
Number):Number {
 return Math.sqrt(Math.pow((x2–x1),2) + Math.
pow((y2–y1),2));
 }

 The fi rst variable we add is interestDistance , or the number
of pixels within which the pointer becomes “ interested ” in the
mouse cursor. At the beginning of updatePointer we also add a
condition to check if the distance between the two is greater than
the amount we specifi ed. We do this by introducing a new func-
tion we’ll call getDistance . If you remember any basic geometry
from school, you’ll probably recognize this method as the distance
 formula ; however, it is also a variation on the Pythagorean
theorem. Recall from earlier in the chapter that:

 c a b2 2 2� �

 where a and b are sides of a right triangle. To fi nd c , we rewrite the
function as:

 c a b� �()2 2

 In our case, a and b represent the differences in x and y , respec-
tively. If we replace these variables with our actual values, it looks
like this:

Distance x x y y� � �[() ()]2 1 2 12 2+

 Written in ActionScript, using the Math class methods for expo-
nents, this same function results in:

 Math .sqrt(Math.pow((x2–x1),2) + Math.pow((y2–y1),2));

Chapter 10 FOUR LETTER WORDS: M-A-T-H 161

 Upon testing the SWF, you’ll see that the pointer will only fol-
low the cursor when the mouse is within 150 pixels of it. We have
bestowed the pointer with a basic decision-making ability. So far
these examples have been fairly abstract; they don’t really consti-
tute a game. We will use these examples as part of a larger piece
of game code, but fi rst we need to understand a little more about
Flash CS4’s coordinate system.

 3D in Flash
 A new feature in Flash CS4 is support for three-dimensional

(3D) objects. This ability is sometimes misunderstood initially and
requires a little clarifi cation. Flash cannot natively make use of
3D models created in programs like Autodesk Maya or 3D Studio.
Rather, you can now manipulate two-dimensional objects in 3D
space, allowing for effects like true perspective skewing and distor-
tion. One way to think about it is to imagine all your objects on the
Stage like rigid pieces of paper; they have no perceivable depth,
but you can tell their orientation in three-dimensional space. This
new ability adds several new properties to DisplayObjects, not the
least of which is the introduction of a third, or z , axis. Figure 10.9
illustrates how the z -axis is represented in the two-dimensional
environment of the Stage; you can think of it as following the
invisible line created from your eyes to the screen.

y

z

x

Stage

 Figure 10.9 The new z -axis in Flash is perpendicular to both the x - and y -axes.

 Position
 On the z -axis, the value of 0 is at Stage level. Negative values for

the z property of a DisplayObject would make the object appear
larger and closer to the viewer. Positive values for z will increasingly
shrink the object, making it look further away. Flash developers
who have performed tricks with the x and y scale of objects in the

162 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 past to achieve the feeling of depth and 3D space will no doubt
breathe a sigh of relief at the ease with which this effect can now
be achieved with only a line or two of code. It should be noted
that the z position of an object only tells Flash how to properly
render the object in perspective; it does not affect the display
list order. In other words, if you had two objects in a scene (let’s
say one with a z position of 30 while the other had a z position of
10), but the one with the higher z position was added to the Stage
later, it would still appear to be on top in the display list.

 Rotation
 In addition to 3D positioning, you can also rotate DisplayObjects

around any of the three axes. Figures 10.10, 10.11, and 10.12

TEXT

 Figure 10.11 A DisplayObject rotated 45 ° on its y -axis.

TEXT

 Figure 10.10 A DisplayObject rotated 45 ° on its x -axis.

TEXT

 Figure 10.12 A DisplayObject rotated 45 ° on its z -axis.

Chapter 10 FOUR LETTER WORDS: M-A-T-H 163

 illustrate how a DisplayObject is rendered when its rotationX ,
 rotationY , and rotationZ properties are each set to 45, respectively.
You’ll notice that the effect of rotationZ is not unlike the traditional
 rotation property from previous versions of Flash .

 Perspective Projection
 At this point it’s important to understand how the 3D transforma-

tions are computed and applied to give the illusion of 3D space in a
two-dimensional environment. Each DisplayObject in Flash has a
vanishing point — that is, the point in 3D space where all parallel lines
heading to the point appear to converge. The use of just one vanish-
ing point is known as one-point projection . Figure 10.13 illustrates
how four different objects look when using the same vanishing point.

 Only being able to use a single vanishing point for all
DisplayObjects would be rather limiting, so Flash allows us to
assign each DisplayObject its own vanishing point. By default,
every new object uses the center of the stage as its vanish-
ing point. Unfortunately, multiple vanishing points cannot be
assigned within the Flash authoring environment. This must
be done through ActionScript using the transform property of
DisplayObjects. In CS4, Transform objects now have a new prop-
erty called perspectiveProjection . This object allows us to set the
vanishing point for any given DisplayObject. Let’s look at a few
lines of script, applied to the same clips shown in Figure 10.13:

 clip1 .transform.perspectiveProjection = new
PerspectiveProjection();
 clip2 .transform.perspectiveProjection = new
PerspectiveProjection();
 clip1 .transform.perspectiveProjection.projectionCenter = new
Point(0, 200);
 clip2 .transform.perspectiveProjection.projectionCenter = new
Point(550, 200);
 clip3 .transform.perspectiveProjection = clip1.transform.
perspectiveProjection;
 clip4 .transform.perspectiveProjection � clip2.transform.
perspectiveProjection;

 Figure 10.13 Four DisplayObjects rotating toward a single vanishing point.

vanishing point

164 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 In this example, we create two new PerspectiveProjection objects,
one positioned at the left-hand side of the screen and the other at
the right. Figure 10.14 shows the result of this script; the two clips
on the left skew to the left, while those on the right skew right.

 With that basic overview of the 3D abilities in CS4, let’s look at
a practical example using the math covered earlier in this chap-
ter. It is similar to the premise behind Atari’s classic arcade game
 Tempest . The player controls a character at the mouth of a long
tunnel that appears to start at the screen in fi rst-person view
and diminishes into the distance. We’ll use the trig functions and
some 3D manipulation to construct the game environment and
move the various components of gameplay.

 The SimpleTunnelShooter Example
 The support fi les for this exercise are in the Chapter 10 folder on

the website ; the main fi le is SimpleTunnelShooter.fl a . All the class
fi les for it are in the tunnelshooter package. This is to eliminate any
interference with other examples from this chapter, as well as to
demonstrate the use of packages for keeping code isolated and
organized.

 The Basic Mechanics
 The game will generate a tunnel in the shape of an octagon

through a series of surface tiles positioned in 3D space. We must
have enough tiles to create a sense of depth, as though the tun-
nel extends a long distance. The player will move the character
around the edges; each side of the tunnel is a “ step. ” Enemies will
be generated at the far end of the tunnel and moved toward the
player over time.

 The Classes
 We will utilize fi ve classes for this example:

 ● Game.as — Controls the input and interaction with the
other components; it is the main “ engine. ”

vanishing point 1 vanishing point 2

 Figure 10.14 Two pairs of DisplayObjects, each with its own vanishing point.

Chapter 10 FOUR LETTER WORDS: M-A-T-H 165

 ● Tunnel.as — A DisplayObject that manages construction of
the 3D tunnel and facilitates interaction with the tiles that
make up the sides of the tunnel.

 ● TunnelTile.as — A DisplayObject that will be distorted in 3D
space and used in conjunction with other tiles to simulate
the 3D surface of the tunnel.

 ● Enemy.as — The class defi ning enemy objects that will be
created at one end of the tunnel and moved toward the
opening.

 ● Player.as — Actually just a stub class; it has no code for this
example other than to establish a link between a symbol
in the library and will be used later to bestow interactive
abilities to the player object.

 We ’ll work with these classes from the inside out, starting with
the Tunnel, TunnelTile, and Enemy classes, and then pull all of
them together in the Game class.

 The Tunnel Class
 To create the illusion of depth, we’ll create a three-dimensional

surface from multiple fl at objects, or tiles. Because it doesn’t need
access to multiple frames, Tunnel extends the Sprite class:

 public class Tunnel extends Sprite {

 protected var _radius:Number;
 protected var _sides:int, _depth:int;
 protected var _tileWidth:Number, _tileHeight:Number;
 protected var _tunnelTiles:Array;
 protected var _highlightIndex:int = –1;

 There are some basic properties we will need to track during
and after creation of the tunnel. Even though it is not a circle, the
radius will keep track of the distance of each tile from the cen-
ter of the tunnel. We also need to know the number of sides the
tunnel has, as well as how many tiles deep it extends. The _tun-
nelTiles array will keep track of all the tiles so they can be refer-
enced later. Finally, the _highlightIndex property will be used
later when we want to light up a set of tiles.

 public function Tunnel(radius:Number, depth:int=10,
sides:int=8) {
 _radius = radius;
 _sides = sides;
 _depth = depth;
 createTunnel();
 }

166 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 In the constructor, we pass the radius of the tunnel, as well as
how many tiles deep and around the tunnel is. After that, we call
 createTunnel which we will look at next:

 protected function createTunnel():void {
 _tunnelTiles = new Array();
 var tempTile:TunnelTile = new TunnelTile();
 _tileHeight = tempTile.height;
 _tileWidth = (_radius * Math.tan(Math.PI/_sides)) * 2;
 var angle:Number = (Math.PI * 2)/_sides;
 for (var j:int = 0; j < _depth; j + +) {
 var tileSet:Array = new Array();
 for (var i:int = 0; i < _sides; i + +) {
 tempTile = new TunnelTile();
 tempTile.width = _tileWidth;
 tempTile.x = Math.cos(i * angle) * _radius;
 tempTile.y = Math.sin(i * angle) * _radius;
 tempTile.z = j * _tileHeight;
 tempTile.rotationX = 90;
 tempTile.rotationZ = i *
Math.round(radiansToDegrees(angle)) + 90;
 var ct:ColorTransform = tempTile.transform.
colorTransform;
 ct.redMultiplier * = (_depth-j)/_depth;
 ct.greenMultiplier * = (_depth-j)/_depth;
 ct.blueMultiplier * = (_depth-j)/_depth;
 tempTile.transform.colorTransform = ct;
 tileSet.push(tempTile);
 addChild(tempTile);
 }
 _tunnelTiles.push(tileSet);
 }
 }

 This method is at the heart of this class. We start by deter-
mining the height and width each tile will have to be for
the sides to meet all the way around the tunnel. We assume
the artwork for each tile will dictate the height of the tile; in
order to maintain the illusion of depth, the pieces will ulti-
mately be taller than they are wide. To determine the width
of each tile, we will need to refer back to the trig functions
from earlier in this chapter. Since we are building our tunnel
to have eight sides, we’ll use that as our visual reference.

 Look at Figure 10.15. Note the white dashed line that rep-
resents the virtual circle that touches the center points of all
the sides of the octagon. The radius of this imaginary circle
is the value passed into the Tunnel constructor. To learn the
value of angle A , we divide π (which is half the angle value
of a circle) by the number of sides. Since we now know an
angle and one side, the best trig function to use is tangent .
Recall from earlier in the chapter that:

 tan /A � opposite adjacent

 Figure 10.15 We can break the shape
down into right triangles in order to use
trig functions to determine missing values.

adjacent

opposite

A°

adjacent = radius
A = / 8 (number of sides)π

Chapter 10 FOUR LETTER WORDS: M-A-T-H 167

 So , it follows that to fi nd the opposite side’s value, we rearrange
the equation as:

 opposite adjacent* � tan A

 However , this will only give us half the width of a side, so we need
to multiply it by 2, as well; thus, we have the line:

 _tileWidth = (_radius * Math.tan(Math.PI/_sides)) * 2;

 Before we start the loops that create the tiles, we need to know
the angle value associated with each side so we can place the
tiles. This is simply the entire angle value of the circle (2 π) in radi-
ans, divided by the number of sides (8):

 var angle:Number = (Math.PI * 2)/_sides;

 Now that we have the information we need to place the tiles
around the center of the tunnel, we need to run through two
loops to create a multidimensional array. Each layer of eight tiles
will be its own array, stored in a larger array:

 for (var j:int = 0; j < _depth; j++) {
 var tileSet:Array = new Array();
 for (var i:int = 0; i < _sides; i++) {

 }
 _tunnelTiles.push(tileSet);
 }

 Each time the outer loop runs, a new tile set is created that
the inner loop will fi ll. That tile set is then added to the larger
 _tunnelTiles array:

 tempTile = new TunnelTile();
 tempTile .width = _tileWidth;

 In the inner loop, we create a new TunnelTile object and
set its width to the predetermined value. Next we need to
position it around the center point. We can once again
break a side down into right triangles. We know the hypote-
nuse to be the value of the radius and the angle is the value
formed between the center points of any two connecting
sides, as shown in Figure 10.16.

 tempTile .x = Math.cos(i * angle) * _radius;
 tempTile .y = Math.sin(i * angle) * _radius;
 tempTile .z = j * _tileHeight;

 The value of i is the current side of the tunnel we’re deal-
ing with, from 0 to 7. We multiply it by the angle value asso-
ciated with each side and use the sine and cosine functions
to position the tile’s x and y coordinates. We then use the
current depth level, represented by j , to position the tiles
down the z -axis. Now the tile is positioned, but it would still

adjacent

hypotenuse

opposite

A°

hypotenuse = radius

 Figure 10.16 We know the value of the
hypotenuse and the angle found between
each side.

168 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 appear to be a fl at shape on the Stage. We must rotate it in 3D
space:

 tempTile .rotationX = 90;

 tempTile .rotationZ = i * Math.round(radiansToDegrees(angle)) + 90;

 We rotate the tile along its x -axis to turn it parallel to the tun-
nel; one end of the tile will now appear closer than the other.
Next we rotate it along the z -axis so each tile faces the center of
the tunnel. We convert the angle from radians to degrees (using a
function we’ll cover momentarily) and add 90. This is to compen-
sate for having rotated the tile along its x -axis already; without it,
the tiles will align perfectly perpendicular to the stage and will
disappear from view. Now the tile is ready to use:

 tileSet .push(tempTile);
 addChild (tempTile);

 We add the tile to the tileSet array (which will get added to
 _tunnelTiles) and then to the display list. If we were to stop here,
the tunnel would work just fi ne, but there’s no real sense of depth,
since Flash’s 3D capabilities do not include any form of lighting.
However, we can manually adjust this using a ColorTransform:

 var ct:ColorTransform = tempTile.transform.colorTransform;
 ct .redMultiplier * = (_depth-j)/_depth;
 ct .greenMultiplier * = (_depth-j)/_depth;
 ct .blueMultiplier * = (_depth-j)/_depth;
 tempTile .transform.colorTransform = ct;

 For the tunnel to look like it is truly diminishing from the play-
er’s point of view, the mouth of the tunnel should look like the
main light source. The light should therefore fall off as the tun-
nel descends. We can achieve this effect by multiplying the red,
green, and blue values of each tile’s colorTransform object by how
deep the tile is. Note that you can’t operate directly on an object’s
colorTransform. You must assign it to a variable, which makes a
copy, modify the copy, and assign it back to the object. All trans-
forms in ActionScript work this way. We’ve now created the tun-
nel and its entire tile set. Let’s look at a few of the other functions
the tunnel uses, including one that was mentioned earlier:

 protected function radiansToDegrees(value:Number):Number {
 return value * (180/Math.PI);
 }

 protected function degreesToRadians(value:Number):Number {
 return value * (Math.PI/180);
 }

 These two functions simply perform the conversion from radi-
ans to degrees and vice versa that we covered earlier in this chap-
ter. For purposes of simplicity, they’re included in this class, but

Chapter 10 FOUR LETTER WORDS: M-A-T-H 169

 the smartest way to utilize them would be as static methods of a
math utilities class:

 public function get radius():Number {
 return _radius;
 }

 public function get sides():int {
 return _sides;
 }

 public function get depth():int {
 return _depth;
 }

 public function get tunnelTiles():Array {
 return _tunnelTiles;
 }

 Each of these getter functions provides easy access to various
properties of the tunnel without making them writeable. One
could argue that the tunnelTiles getter should return a copy of
the tunnel array, not the original, but since you would also have
to copy all the arrays inside it as well, it is not a very effi cient way
to manage the list. It is better to just be mindful that any edits
made to the tunnelTiles list could break the tunnel’s functionality
of appearance.

 public function highlightSide(angle:Number):void {
 if (angle < 0) angle = Math.PI * 2 + angle;
 var index:int = Math.round((angle * _sides)/(Math.PI * 2));
 if (_highlightIndex = = index) return;
 for (var i:int = 0; i < _tunnelTiles.length; i++) {
 if (_highlightIndex > = 0) _tunnelTiles[i]
[_highlightIndex].deactivate();
 _tunnelTiles[i][index].activate();
 }
 _highlightIndex = index;
 }

 The fi nal method in the Tunnel class is one that will be of par-
ticular use to the Game class. It allows an entire side (from the
top to the bottom) to be highlighted, or lit up. This will be useful
if we need to point out which side the player is currently on or if
we need to notify the player of an enemy on a particular side. It
accepts an angle as a parameter to match with its corresponding
side. If the angle is negative, we convert it to its positive equiva-
lent by adding 2 π (or 360 °). Once we know which side is correct,
and if it is not already highlighted, we loop through the list from
top to bottom to call the activate method of each tile and the
 deactivate method of any tiles that were previously highlighted.
Afterwards, we set the value of _highlightIndex to the currently
selected side for reference later.

170 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 Techie Note

 You may have noticed that there is one method I didn’t discuss. It is the
getRandomColor method, and it does exactly that. It returns a randomly
generated ColorTransform object that can be applied. I created it as an
experiment when writing this class, and though it didn’t produce the
results I was looking for it is very interesting and might prove helpful if
you want to do something with colored tiles or any other type of color
generation.

 Next , we’ll look at the TunnelTile class, which the Tunnel class
utilized to build itself. Since the class is pretty short, we’ll look at
it in its entirety and then explain each method:

 public class TunnelTile extends MovieClip {

 private var _highlightedTransform:ColorTransform;
 private var _normalTransform:ColorTransform;

 public function TunnelTile() {
 }

 public function activate() {
 if (!_normalTransform) _normalTransform = transform.
colorTransform;
 if (!_highlightedTransform) createHighlight();
 transform.colorTransform = _highlightedTransform;
 }

 public function deactivate() {
 transform.colorTransform = _normalTransform;
 }

 private function createHighlight() {
 _highlightedTransform = transform.colorTransform;
 _highlightedTransform.redOffset = _highlightedTransform.
greenOffset = _highlightedTransform.blueOffset = 50;
 }
 }

 The constructor for this class does nothing, as the Tunnel is
responsible for placing and manipulating each tile. The methods
here mainly deal with activating and deactivating the highlight
effect for the tile, as evidenced by the method names activate ,
 deactivate , and createHighlight . The fi rst time a tile is activated,
it stores its normal color transform (the one given to it by the
Tunnel class) in a private variable for future reference. It also cre-
ates a highlighted version of that transform, which is done by
offsetting all the color values by 50. This creates a tint effect, as
though the tiles were overlaid with white. That way, when activate
is called, the tint transform is used, and deactivate returns the
transform to its previous state.

Chapter 10 FOUR LETTER WORDS: M-A-T-H 171

 The last class to examine before we begin dissection of the
gameplay is the Enemy class. It is also very simple, though further
functionality could easily be added:

 public class Enemy extends MovieClip {

 public var index:int;
 protected var _brightness:Number;

 public function Enemy(index:int) {
 this.index = index;
 }

 public function get brightness ():Number {
 return _brightness;
 }

 public function set brightness (value:Number):void {
 _brightness = value;
 var ct:ColorTransform = transform.colorTransform;
 ct.redMultiplier = ct.greenMultiplier = ct.
blueMultiplier = _brightness;
 transform.colorTransform = ct;
 }
 }

 Since an enemy in this style of game generally sticks to one
side of the tunnel, we keep track of which side through the index
property, which is passed in when the enemy is created. The
other method is a getter/setter combo that set the brightness
value of the enemy’s colorTransform. This has the opposite effect
of the tint we used on the tiles. It will allow us to make the enemy
darker the farther down the tunnel it is and make it brighter as it
approaches the player.

 We are now ready to look at the Game class, and the logic that
will control the player and the enemies:

 public class Game extends Sprite {
 static public var tunnelSize:Number = 175;
 static public var tunnelDepth:int = 8;
 static public var tunnelSides:int = 8;
 static public var enemyFrequency:Number = 3;
 static public var enemyTime:Number = 5;

 protected var _tunnel:Tunnel;
 protected var _player:Player;
 protected var _angleIncrement:Number;
 protected var _enemyFrequency:Number;
 protected var _enemyTime:Number;
 protected var _enemyCreator:Timer;
 protected var _enemyList:Dictionary;

 The class starts out with some static variables; think of these
as game settings. We use variables instead of constants because
we might want to be able to change these values gradually at run-
time. You’ll probably recognize the fi rst three as components of the
Tunnel class, which the Game class will have to create. The next

172 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 two relate to the creation of enemies. The enemyFrequency is the
rate in seconds at which enemies are created, and the enemyTime
is the amount of time (also in seconds) it takes for an enemy to
move from the bottom of the tunnel to the top. We also declare
some protected variables we will use later on, such as references
to the Tunnel, Player, and list of enemies. You’ll notice we also
duplicate two of the static variables as protected instance vari-
ables. This protects these values from changing in the middle
of the game by an outside source. These values will be assigned
in the constructor and then are only adjustable from inside the
class. We’ll look at the constructor next:

 public function Game() {
 _tunnel = new Tunnel(tunnelSize, tunnelDepth, tunnelSides);
 addChild(_tunnel);
 _player = new Player();
 addChild(_player);
 _angleIncrement = 2 * Math.PI/tunnelSides;
 _enemyFrequency = enemyFrequency;
 _enemyTime = enemyTime;
 _enemyCreator = new Timer(_enemyFrequency * 1000);
 _enemyCreator.addEventListener(TimerEvent.TIMER, addEnemy,
false, 0, true);
 _enemyList = new Dictionary(true);
 }

 The constructor sets up a new Tunnel object, a Player object,
and sets up the Timer object that will release new enemies using
the addEnemy method. Now we’ll look at the methods that start
the game and control player movement:

 public function startGame():void {
 _enemyCreator.start();
 addEventListener(Event.ENTER_FRAME, frameScript, false, 0,
true);
 }

 protected function frameScript(e:Event):void {
 movePlayer();
 }

 protected function movePlayer():void {
 var mouseAngle:Number = Math.atan2(mouseY, mouseX);
 var roundedAngle:Number = _angleIncrement *
Math.round(mouseAngle/_angleIncrement);
 _player.x = _tunnel.radius * Math.cos(roundedAngle);
 _player.y = _tunnel.radius * Math.sin(roundedAngle);
 var oldRotation:Number = _player.rotation;
 _player.rotation = roundedAngle * (180/Math.PI) + 180;
 if (oldRotation ! = _player.rotation)
_tunnel.highlightSide(roundedAngle);
 }

 When startGame is called, the Timer object is started to cre-
ate new enemies and a frame script is attached to the enterFrame

Chapter 10 FOUR LETTER WORDS: M-A-T-H 173

 event. This frameScript method simply calls movePlayer , which
reads the position of the mouse around the center of the tunnel
and adjusts the Player’s x and y position accordingly to stay along
the outside edge. It also rotates the Player so it is always pointing
inward toward the tunnel. If the player moves to a new side, that
side of the tunnel is highlighted using the methods we looked at
earlier.

 protected function addEnemy(e:TimerEvent):void {
 var index:int = Math.round(Math.random() * (_tunnel.sides-1));
 var enemy:Enemy = new Enemy(index);
 enemy.x = _tunnel.tunnelTiles[0][index].x;
 enemy.y = _tunnel.tunnelTiles[0][index].y;
 enemy.z = _tunnel.tunnelTiles[_tunnel.depth-1][index].z;
 enemy.rotation = index * (360/_tunnel.sides)–180;
 enemy.brightness = .5;
 addChildAt(enemy, getChildIndex(_player));
 _enemyList[enemy] = enemy;
 var tween:TweenLite = TweenLite.to(enemy, _enemyTime,
 { z:0, brightness:1, ease:Quad.easeIn, onComplete:
enemyMovementFinished, onCompleteParams:[enemy] });
 }

 protected function enemyMovementFinished(target:Enemy):void {
 removeChild(target);
 delete _enemyList[target];
 }

 The addEnemy function picks a side at random, creates a new
Enemy object, and positions it on that side, at the bottom of the
tunnel. It also sets the enemy to start out at half brightness so it will
be visible but blend in much more with the tiles. Once the enemy
has been added, a new tween is created using TweenLite (covered in
Chapter 6), which will animate the enemy from bottom to top over
the time we specifi ed earlier. Once the tween is complete, enemy-
MovementFinished is called. At the moment, all it does is remove
the enemy from memory, but in a full game it would contain addi-
tional logic to cause damage when it hit if the player was not on that
side or deduct points from the player’s score. The enemy motion
could also be handled by a moveEnemies method that decrements
the enemy’s z position over time, but the current technique has two
big plusses going for it. First, it is much easier to implement — one
line of code vs. several. Second, and even more importantly, using
a tween gives much greater motion control. Notice that the tween
uses an easeIn function on the animation, which will make the
enemy slowly accelerate as it moves. This effect would be much
more troublesome to write manually and with very little return.

 All of the necessary classes for this iteration of the game have
been completed. Now it is time to implement with actual assets. If
you open the SimpleTunnelShooter.fl a fi le, you’ll fi nd some clips
in the library that will be used by the classes. These include the

174 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 Enemy clip, the Player clip, and the TunnelTile clip. There is also
a bitmap used for the tile texture. I chose a brick because it has a
nice effect along the seams, but most any texture would work for
the tunnel and some might even stitch together more cleanly.

 The only thing on the timeline is the script necessary to instan-
tiate a game and start it. This could also be done with a document
class for the FLA, but for simplicity and since this isn’t a full game
the timeline suffi ces just fi ne:

 import tunnelshooter. * ;

 var game:Game = new Game();
 game .x = 275;
 game .y = 200;
 addChild (game);
 game .startGame();

 That ’s it! We’re done with this example. When published, the
end result should look something like Figure 10.17.

 Figure 10.17 The completed tunnel shooter example.

 Although this is by no means a complete game, it contains
numerous examples of how the trig functions can be used to
manipulate objects in two- and three-dimensional space. Here
are some ideas on functionality that would enhance this game:

 ● Continually increasing the speed of enemy creation
 ● Players being able to either catch enemies or shoot at them
 ● Subtle rotation or distortion of the entire tunnel over time

to create player disorientation
 ● Multiple types of enemies
 ● Other shapes of tunnels (eight sides work well for perfor-

mance reasons, but many more could be used)

Chapter 10 FOUR LETTER WORDS: M-A-T-H 175

 This concludes Part 1 of this chapter. We will continue to apply
these concepts moving forward into our discussion of physics,
as well as in upcoming chapters as we delve into more complex
game mechanics.

 PART 2
 Physics

 The correct name for this half of the chapter really should be
two-dimensional, algebraic physics, since that’s all we’re going
to cover for our purposes. Physics is, among other defi nitions,
the science of the behavior and interaction of objects in the uni-
verse around us. These include concepts such as force, mass, and
energy. The fi eld of physics is a vast area of study, and this chap-
ter will focus on one specifi c branch of it known as mechanics .
Even more specifi cally, we will be looking at classical mechanics ,
which, among other things, deals with the interactions between
objects in our visible, physical world. In the upcoming section,
we will cover the concepts behind basic mechanics and how to
apply them in games. To start out, we need to establish some
standardized vocabulary.

 Scalar
 A scalar is simply a number in traditional mathematical terms.

In physics applications, it can represent a magnitude such as
speed — for example, 4 miles per hour (4 mph). There is no infor-
mation about the direction or orientation of an object traveling at
that speed.

 Vector
 In contrast to a scalar, a vector contains information about

both the magnitude of a physical element as well as its direction.
The direction component is a numeric angle value, but in conver-
sation it is often referred to in looser terminology. For instance,
the vector form of the scalar example above could be something
like “ 4 miles per hour, heading northwest, ” although we would
not necessarily be able to do any calculations with that informa-
tion until we assigned it a number.

 The Vector3D Class
 Among the new classes in Flash CS4 for handling complex

math more effi ciently is the new Vector3D class. It is the code

176 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 representation of the vector concept we learned about earlier.
It contains x , y , and z values to determine its magnitude and a
fourth value, w , which stores information about the vector’s direc-
tion, such as an angle. We will look at an example shortly where
we will use the Vector3D class to simplify some vector math.

 Displacement
 Displacement is most easily thought of as the distance between

any two points in space when connected by a straight line.
Though technically a vector, we generally think of displacement
in terms of a scalar. That is to say, we don’t usually consider the
direction of one object relative to another when computing their
distance apart from each other. It would be odd to refer to the dis-
tance from one’s self to a nearby table as “ 4 feet, 30 degrees from
my facing direction. ” We simply say “ 4 feet. ”

 Velocity
 Displacement over a period of time results in what we know

as speed . For example, if it takes me an hour to walk 5 miles,
my speed is 5 miles per hour (5 mph). However, as discussed
above, this is merely a scalar value, as it has no directional infor-
mation. If we add a direction, such as 90 ° , we get the vector of
 velocity . The formula for determining velocity, where v � velocity,
 d � displacement, and t � time, is:

 v d/t�

 Acceleration
 If we change the velocity of an object over time (whether

increasing or decreasing), we create that object’s acceleration . For
the sake of clarity, acceleration can be either a positive or nega-
tive change, but we usually refer to an acceleration that results

 Techie Note. Vector vs. Vector3D

 There is another new class in Flash CS4 known as Vector. It has nothing to
do with vectors in physics terms. Rather, it is a special type of array that
stores only one type of value and uses less memory than an array by doing
so. For example, if you used arrays of numbers in previous versions of
Flash, you can now use a vector instead. It has all the same methods and
properties of arrays but is faster to navigate and more effi cient. The name
 “ vector ” comes from the C programming language, but really you can just
think of it as a typed array.

Chapter 10 FOUR LETTER WORDS: M-A-T-H 177

 in a lower velocity, or slowing down, as a deceleration . The for-
mula for acceleration, where a � acceleration, v � velocity, and
 t � time is:

 a v/t�

 A naturally occurring example of acceleration that we are all
familiar with is that of gravity, the force pulling us downward
toward the Earth’s center. The magnitude of gravity on Earth is
approximately 9.8 meters per second.

 Friction
 When two surfaces are in contact with each other, the resis-

tance between the two is known as friction. Each surface has a
property unique to it known as the coeffi cient of friction . Simply
put, it describes the smoothness or roughness of a surface — the
higher the number, the more friction that surface generates.
Sandpaper, for example, would have a much higher coeffi cient of
friction than a material like ice. The energy that is lost due to fric-
tion is converted to heat, which explains why rubbing your hands
together eventually warms them. However, for our purposes,
all you really need to understand about friction is its degrading
affect on velocity and acceleration. An object’s coeffi cient of fric-
tion often has to be determined through trial and error when pro-
gramming. For example, the value for the friction of a rolling ball
in the real world might not work effectively in a game. The impor-
tant thing to remember is that none of the values must be set in
stone — you can change them as needed to suit gameplay.

 Inertia
 The counterpart to friction, inertia is an object’s resistance to

change that causes it to either want to stay at rest or keep mov-
ing. Without friction, static objects would never be able to gain
traction, thus remaining still, and moving objects would never be
able to come to a stop. You can feel the sensation of inertia when
inside an elevator or vehicle that comes to a sudden stop; your
body can feel for a moment like it is still moving.

 Simulation vs. Illusion
 It ’s important to remember that as fast as ActionScript 3 and

the Flash Player are, they still are not powerful enough to run a
truly realistic physics simulation. Some open-source implemen-
tations of simple physics engines have been written, but most

178 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 have severe limitations compared to what is possible in software
that is written much closer to the hardware level than Flash.
However, this is not to say that these engines, or even the rela-
tively simple code we will write shortly in this chapter, are not
effective at conveying the illusion of physical reactions. Indeed,
we will see that even a bare-bones implementation of physics can
be effective at suspending disbelief for the purposes of a game.

 Reality vs. Expectations
 Another point that some developers get hung up on when try-

ing to emulate physics in Flash is striving for real-world values
and reactions. While this is admirable, it often yields unsatisfac-
tory gameplay. Take, for example, a platform game with multiple
levels the player can move between by jumping and dropping.
If you were to apply the rather harsh realities of the effects of
gravity and friction on moving bodies, the game would become
impossibly hard. This is because a realistic simulation factors out
human response time. It is hard for people to stop themselves
from falling over in real life once the process begins — it would be
practically impossible using a keyboard and mouse. Characters
in games have often jumped farther, run faster, and controlled
themselves in mid-air unlike how real humans would ever be able
to maneuver. This is okay; as I mentioned before, it only takes so
much to suspend a player’s disbelief. Part of achieving effective
physics in games is knowing what the player will expect to hap-
pen, rather than simply trying to mimic the world precisely. We
will explore this more through the following examples.

 Example: A Top-Down Driving Engine
 Modern driving games for computers and consoles employ a lot

of physics. All sorts of aspects, such as road conditions, gear ratios,
tire materials, and chassis weights, factor into the math behind
these simulations, and the result (depending on the game) is a
fairly accurate representation of real-world physics. For the pur-
poses of most Flash games, however, what we are about to create
will suffi ce for a very satisfactory driving experience. This example
is divided into two classes: the Vehicle class, which defi nes the
properties of the car, and the Game class, which handles input
and manipulates the car’s position and rotation. There is also an
additional utility class called Time that will prove handy both here
and elsewhere in later examples. The fi les for this example are in
the Chapter 10 folder: DrivingSim and the drivingsim package.
The end result will use the arrow keys to steer, accelerate, and
reverse and the space bar to do a hard brake stop.

Chapter 10 FOUR LETTER WORDS: M-A-T-H 179

 The Vehicle Class
 This class will defi ne all the basic properties of the car we’ll

see on screen. It starts with a number of constant and variable
declarations:

 static public const maxAcceleration:Number = 100;
 static public const maxSpeed:Number = 350;
 static public const maxSteering:Number = Math.PI/40;
 static public const accelerationRate:Number = 50;
 static public const handBrakeFriction:Number = .75;
 static public const stoppingThreshold:Number = 0.1;

 The fi rst values set are the maximum acceleration and speed per
second, followed by the maximum turning radius. Adjusting these
three values yields a very different experience, and you could easily
make them instance variables instead of static constants, thereby
allowing different cars to have different behavior. We also defi ne
the rate of acceleration, meaning how many units we can increase
our acceleration per second. Next we set the amount of friction the
hand brake applies to the speed of the car. In this case, as long as
the hand brake is being held, the car will slow to 75% of its current
speed. The last constant is called the stoppingThreshold , which is
the value below which the game will round the speed down to zero.
This is present because, when multiplying a number between 0
and 1, the result will gradually get closer to zero, but never reach it.

 protected var _speed:Number = 0; //PIXELS PER SECOND
 protected var _acceleration:Number = 0; //PIXELS PER SECOND
 protected var _angle:Number = 0; //ANGLE IN RADIANS

 Next come three protected variables for speed, acceleration,
and the angle of the car, all initially set to zero. Our constructor is
empty for this example, so we’ll skip it and move on to the three
getter/setter function pairs that will complete this class:

 public function get angle():Number {
 return _angle;
 }

 public function set angle(value:Number):void {
 _angle = value;
 rotation = _angle * (180/Math.PI);
 }

 These functions expose the protected _angle variable and also
set the visible rotation of the car sprite on screen:

 public function get speed():Number {
 return _speed;
 }

 public function set speed(value:Number):void {
 _speed = Math.max(Math.min(value,maxSpeed),-maxSpeed);
 if (Math.abs(_speed) < stoppingThreshold) _speed = 0;
 }

180 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 For the speed property, because it can be negative or posi-
tive, we use the Math min() and max() methods to force restric-
tions on how high or low the speed can go. This is also where we
employ the stoppingThreshold property to truncate the speed if
it becomes infi nitesimally small:

 public function get acceleration():Number {
 return _acceleration;
 }

 public function set acceleration(value:Number):void {
 _acceleration = Math.max(Math.min(value,maxAcceleration),
-maxAcceleration);
 }

 Much like the speed methods, we use min() and max() again
to set the limits for the acceleration property. That is all that is
required in the Vehicle class for now.

 The Time Class
 Before we move on to the Game class, we should take a quick

look at a helpful utility class that the game will use. Since Flash
is a frame-based environment and therefore dependent on the
machine it is running on maintaining a consistent frame rate, it’s
a good idea to have a way to enforce accuracy in our calculations
regardless of the number of frames actually being processed. It
is also often easier to think of units like speed and acceleration
in terms of seconds rather than frames. To gain this accuracy,
we need to know how much actual time has transpired between
frames. This change in time is often referred to as delta time . This
value can be obtained within a couple of lines using the getTimer
method in the fl ash.utils package. We could have just written
these lines into the Game class, but because it has so many appli-
cations it’s better to write it once in a class and reference it there
from now on.

 Techie Note. getTimer

 This method has been around since Flash 4 and still proves its usefulness
to this day. It returns the number of milliseconds that have passed since the
Flash Player started running. It is perfect for calculating time spent between
frames or any other pair of events. It should be noted that you cannot rely
on the method to return a specifi c number or always start from 0. If multiple
instances of the Flash Player are open, they all share the same value, and
whichever one opened fi rst started at 0.

Chapter 10 FOUR LETTER WORDS: M-A-T-H 181

 We ’ll look at this class in a single pass, as it is relatively short:

 package drivingsim {
 import fl ash.display.Sprite;
 import fl ash.events.Event;
 import fl ash.utils.getTimer;

 public class Time extends Sprite {

 static private var _instance:Time = new Time();
 static private var _currentTime:int;
 static private var _previousTime:int;

 public function Time() {
 if (_instance) throw new Error(“ The Time class cannot be
instantiated. ”);
 addEventListener(Event.ENTER_FRAME, updateTime, false,
0, true);
 _currentTime = getTimer();
 }

 private function updateTime(e:Event):void {
 _previousTime = _currentTime;
 _currentTime = getTimer();
 }

 static public function get deltaTime():Number {
 return (_currentTime-_previousTime)/1000;
 }
 }
 }

 This class instantiates a single instance of itself in memory and
prevents any other instantiations. The one static, public method it
has is a getter for deltaTime . Every frame cycle, the class updates
the current and previous times so at any moment it is ready to
return an accurate delta. Since I like to work in seconds rather
than milliseconds, I divide the difference by 1000 when I return
it. This could easily be modifi ed to return milliseconds instead, if
that’s what you prefer. It’s mainly important to pick a convention
and stick with it. We’ll now look at how this class is used in the
Game class.

 The Game Class
 Now we’ve come to the core of the functionality and the math

that we’ll need to employ. The Game class also functions as the
document class for the accompanying FLA. The class starts out
with just a few declarations:

 protected var _leftPressed:Boolean;
 protected var _rightPressed:Boolean;
 protected var _upPressed:Boolean;
 protected var _downPressed:Boolean;
 protected var _spacePressed:Boolean;
 protected var _friction:Number = .95;

182 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 There are Boolean values for each key we’ll use so we can know
whether or not that key is being pressed. There is also a value
for friction or, rather, the coeffi cient of friction of the surface the
vehicle will be driving on. This value will cause the vehicle to slow
down when it is not accelerating:

 public function Game() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage, false,
0, true);
 }

 private function addedToStage(e:Event):void {
 startGame();
 }

 public function startGame():void {
 addEventListener(KeyboardEvent.KEY_DOWN, keyDown, false, 0,
true);
 addEventListener(KeyboardEvent.KEY_UP, keyUp, false, 0,
true);
 addEventListener(Event.ENTER_FRAME, gameLoop, false, 0,
true);
 }

 When the game is added to the Stage, it triggers startGame.
This method sets up listeners for both keyboard input and
the enterFrame cycle. We’ll look at the keyDown and keyUp
methods next:

 protected function keyDown(e:KeyboardEvent):void {
 if (e.keyCode = = Keyboard.LEFT) _leftPressed = true;
 if (e.keyCode = = Keyboard.RIGHT) _rightPressed = true;
 if (e.keyCode = = Keyboard.UP) _upPressed = true;
 if (e.keyCode = = Keyboard.DOWN) _downPressed = true;
 if (e.keyCode = = Keyboard.SPACE) _spacePressed = true;
 }

 protected function keyUp(e:KeyboardEvent):void {
 if (e.keyCode = = Keyboard.LEFT) _leftPressed = false;
 if (e.keyCode = = Keyboard.RIGHT) _rightPressed = false;
 if (e.keyCode = = Keyboard.UP) _upPressed = false;
 if (e.keyCode = = Keyboard.DOWN) _downPressed = false;
 if (e.keyCode = = Keyboard.SPACE) _spacePressed = false;
 }

 These two functions simply toggle the different Boolean values
to either true or false as keyboard input is received:

 protected function gameLoop(e:Event):void {
 if (stage.focus ! = this) stage.focus = this;
 readInput();
 moveVehicle();
 }

 Because we’re dealing with keyboard input, which automati-
cally focuses on the Stage, on each frame cycle we make sure that
the game still has focus, even if the player were to click somewhere

Chapter 10 FOUR LETTER WORDS: M-A-T-H 183

 else on the screen. The class then calls readInput and moveVehi-
cle , both of which we’ll look at next:

 protected function readInput():void {
 if (_upPressed) vehicle.acceleration + = Vehicle.
accelerationRate * Time.deltaTime;
 if (_downPressed) vehicle.acceleration - = Vehicle.
accelerationRate * Time.deltaTime;
 if (!_upPressed & & !_downPressed) vehicle.acceleration = 0;
 if (_rightPressed) vehicle.angle + = (Vehicle.maxSteering *
(vehicle.speed/Vehicle.maxSpeed));
 if (_leftPressed) vehicle.angle - = (Vehicle.maxSteering *
(vehicle.speed/Vehicle.maxSpeed));
 if (_spacePressed) {
 vehicle.speed * = Vehicle.handBrakeFriction;
 vehicle.acceleration = 0;
 }
 }

 This method runs through all the key-related Boolean values.
If the up or down arrows are pressed, it applies acceleration. If
the right and left arrows are pressed, it applies steering based
on the speed of the vehicle. Finally, if the space bar is pressed, it
applies the hand brake friction to the vehicle’s speed and resets
any acceleration:

 protected function moveVehicle():void {
 if (!vehicle.acceleration) vehicle.speed * = _friction;
 vehicle.speed + = vehicle.acceleration;
 vehicle.x + = Math.cos(vehicle.angle) * (vehicle.speed *
Time.deltaTime);
 vehicle.y + = Math.sin(vehicle.angle) * (vehicle.speed *
Time.deltaTime);
 }

 Although only four lines, this method does a great deal. First, it
applies friction to the vehicle’s speed if it is not accelerating; not
doing so would cause the vehicle to continue moving as though it
were on a very slick surface. The vehicle’s speed is then increased
by its acceleration. The last two lines then compute the vehicle’s
new x and y coordinates based on the angle the car is facing and
the speed at which it is traveling. Note that both this method and
the readInput method make use of the Time.deltaTime property
to only apply the speed that is necessary for the amount of time
that has passed. By using this method, the frame rate of the SWF
can now change, either deliberately or accidentally, without con-
sequence to the responsiveness of the simulation.

 If you open the FLA fi le associated with this example and run
it, you will see the vehicle instance on the Stage is now controlla-
ble with the arrow keys and space bar. This is just the foundation
for a game — it has no collision detection, computer AI, or even
goals. One other thing to note about this example is that the car
moves like it has the best tires ever made and can turn on a dime.

184 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 While this is okay and might work perfectly for certain scenarios,
the simulation could be a little more realistic with the addition of
the ability to drift the car, essentially making the motion of the
car continue in the direction it was previously traveling. Let’s look
at how we could achieve that now.

 Example: Top-Down Driving Game with Drift
 In the previous example, we applied the acceleration directly

to the speed of the car without taking into account the direction
of the acceleration. Remember earlier how we learned that vec-
tors have both a magnitude and a direction? If we make both the
acceleration and velocity of the car into vectors, we’ll gain more
realistic behavior when we combine them. Since this is just a
modifi cation of the previous example, I won’t cover any sections
of the code that haven’t changed. The fi les for this example are in
the Chapter 10 folder; the FLA is DrivingSimDrift, and the associ-
ated package is called drivingsimdrift. Let’s start by looking at the
changes to the Vehicle class:

 static public const maxSpeed:Number = 350;
 static public const maxSteering:Number = Math.PI/30;
 static public const maxAcceleration:Number = 400;
 static public const handBrakeFriction:Number = .75;
 static public const stoppingThreshold:Number = 0.1;

 protected var _velocity:Vector3D = new Vector3D();
 protected var _acceleration:Vector3D = new Vector3D();
 protected var _angle:Number = 0;

 We still have the maxAcceleration, maxSpeed, and maxSteering
constants, but the values have changed some. Like the previous
example, these values are determined through experimentation
and are completely subject to change depending on what kind of
handling you want the car to have. The two other major changes
are that the speed value has been replaced by velocity and is now of
type Vector3D. Acceleration keeps its name but is also a Vector3D.
These changes obviously affect their getter/setter functions:

 public function get velocity():Vector3D {
 return _velocity;
 }

 public function set velocity(value:Vector3D):void {
 _velocity = value;
 if (_velocity.length > maxSpeed) {
 var overage:Number = (_velocity.length-maxSpeed)/maxSpeed;
 _velocity.scaleBy(1/(1 + overage));
 }

 if (_velocity.length < stoppingThreshold) {
 _velocity.x = _velocity.y = 0;
 }
 }

Chapter 10 FOUR LETTER WORDS: M-A-T-H 185

 public function get acceleration():Vector3D {
 return _acceleration;
 }

 public function set acceleration(value:Vector3D):void {
 _acceleration = value;
 }

 While the acceleration functions are not much different than
you would expect, the velocity setter has changed signifi cantly. To
enforce a top speed and the stopping threshold, we must measure
the length of the vector, which is another term for its magnitude.
If the length property is greater than the top speed, we scale the
entire vector by the amount of the overage. This will adjust the x
and y properties of the vector in a single line instead of having to
do them separately. If the length property is less than the stop-
ping threshold, we also set the x and y properties to 0. We could
have also scaled the vector by 0, but a simple variable assignment
is less overhead than performing calculations on all the proper-
ties of the vector. Next let’s look at the changes to the Game class.
Only the readInput and moveVehicle methods have changed, so
that’s all we’ll address here:

 protected function readInput():void {
 vehicle.acceleration = new Vector3D();
 if (_upPressed) {
 vehicle.acceleration.x + = Math.cos(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime
 vehicle.acceleration.y + = Math.sin(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime;
 }
 if (_downPressed) {
 vehicle.acceleration.x + = -Math.cos(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime
 vehicle.acceleration.y + = -Math.sin(vehicle.angle) *
Vehicle.maxAcceleration * Time.deltaTime;
 }
 if (_rightPressed) vehicle.angle + = (Vehicle.maxSteering *
(vehicle.velocity.length/Vehicle.maxSpeed));
 if (_leftPressed) vehicle.angle - = (Vehicle.maxSteering *
(vehicle.velocity.length/Vehicle.maxSpeed));
 if (_spacePressed) {
 vehicle.velocity.scaleBy(Vehicle.handBrakeFriction);
 }
 }

 At the onset of the readInput method, we create a new, empty
vector object for acceleration. If the up or down arrows are
pressed, the vector’s x and y components are adjusted accord-
ingly. If neither is pressed, the acceleration is empty and will
have no effect when combined with the velocity. If the space bar

186 Chapter 10 FOUR LETTER WORDS: M-A-T-H

 is pressed, the velocity is scaled down by the amount of vehicle
hand brake friction:

 protected function moveVehicle():void {
 vehicle.velocity.scaleBy(_friction);
 vehicle.velocity = vehicle.velocity.add(vehicle.acceleration);
 vehicle.x + = vehicle.velocity.x * Time.deltaTime;
 vehicle.y + = vehicle.velocity.y * Time.deltaTime;
 }

 When moving the vehicle, we use the friction property to scale
the velocity down. We then combine the existing velocity vector
with the new acceleration vector. Another way to combine the two
would have been the Vector3D incrementBy method, which adds
the two relevant vectors without returning a new object. However,
in our case, by assigning the result back to the velocity property
of the vehicle, it forces it through the maxSpeed check we looked
at earlier. If we used incrementBy we would have to do that check
manually here. Finally, to adjust the x and y positions of the vehi-
cle, we increment it by the velocity’s x and y components and the
deltaTime property.

 If you export this example and test it, you’ll notice immedi-
ately that the car handles very differently, almost as if it were on
ice. When you turn at high speed, the car continues in its original
direction for a time before eventually aligning itself with the new
direction. This is because by adding the vectors together with
discrete x and y values, it takes a few passes of friction scaling to
reduce the effect of previous accelerations. Naturally, most cars
don’t drift the way this one does. With some additional complex-
ity, you could factor in the weight of the car to determine when
the car’s velocity overcomes its downward force (essentially, the
car’s traction) and so get the best of both examples.

 Review
 We ’ve covered a lot of material in this chapter, so let’s run

through a high-level reminder of everything we’ve learned:
 ● The relationship of triangles to angle and distance problems
 ● The trigonometric functions (sine, cosine, and tangent)

and their uses
 ● The coordinate system inside of Flash, including the new

3D system in Flash CS4
 ● How to manipulate objects in Flash’s 3D space
 ● How to use perspective projection to create vanishing

points
 ● The difference between scalar and vector values in physics
 ● The basics of classical mechanics in motion — velocity,

acceleration, friction, and inertia

Chapter 10 FOUR LETTER WORDS: M-A-T-H 187

 ● How to apply simple two-dimensional physics in
ActionScript

 ● How to use the new Vector3D class to simplify the process
of combining vectors

 There is considerably more material about physics in books
and on the Internet to read if you’re interested in doing more
robust simulations. There are also links to a number of resources
on this book’s website, fl ashgamebook.com.

This page intentionally left blank

189
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 DON’T HIT ME!

 If you do much game development, you’ll eventually need to
determine when two objects on screen are colliding with one
another. While Flash does not automatically notify you of this,
there are a number of different methods that can be used to
detect it. In this chapter, we’ll look at several types of collision
detection and the scenarios in which they work best. We’ll also
look at the strategies that can be used with different styles of
detection to achieve the desired results.

 What You Can Do vs. What You Need
 A temptation by some developers, particularly those com-

ing from other game development backgrounds, is to always use
the most precise, robust collision detection in all situations. The
problem with this approach is the same that we discussed about
physics in the last chapter — using more than you need to create
an illusion is a waste of effort and computing power that could
be used elsewhere. The trick with collision detection is to identify
the minimum accuracy you need to achieve a particular effect
and then implement a system that works for that scenario. One
good reason not to try to develop the end-all collision detection
system is that there really isn’t one that works best in every pos-
sible situation. It’s rare that I’ve used the same technique twice
in two games that weren’t extremely similar; for example, what
works well in a driving game might not make sense in a pinball
game. The next several sections outline the different types of
detection you can achieve in AS3, with some examples.

 hitTestObject — The Most Basic Detection
 AS3 provides two methods to developers to detect when

DisplayObjects are colliding. The fi rst, and simplest, is hitTest

 11

190 Chapter 11 DON’T HIT ME!

Object . You can call it on one DisplayObject and
pass it another DisplayObject to test against, regard-
less of location or parental hierarchy. Flash will
resolve any differences in coordinate systems. If
the two objects are touching, it returns true, other-
wise false. Sounds great, right? Unfortunately, there
is one big catch. To keep this calculation fast, Flash
resolves the two DisplayObjects down to their basic
bounding boxes. In other words, even if a shape is
very intricate and has large parts that are transpar-
ent or void of any data, Flash will see it as a single

rectangle. This is shown in Figure 11.1.
 To make matters worse, the bounding box

will adjust to whatever size it needs to be to
encompass all of the DisplayObject data. If
that circle from Figure 11.1 were a bitmap
instead of a shape, it would actually be a
square because of the transparent parts of
the image. If you were to rotate this circle,
the bitmap square is now at an angle. Figure
11.2 shows the larger bounding box that
Flash will now use to fi t this rotated shape.

 As a result of these limitations, hitTestO-
bject is generally the least accurate method
of determining a collision. That said, it is

very fast and defi nitely has its uses. When all you need to know
is whether or not two Sprites are overlapping into each other’s
display space, hitTestObject is very effective. If your game has
DisplayObjects that can change their distance from the player
(i.e., move closer or further away from the player’s perspective),
you’re likely going to have to deal with managing the indices of
these objects. If you detect that two objects are touching, you
have a great opportunity to check their positions and display
indices.

 hitTestPoint — One Step Up
 In earlier versions of Flash, hitTestObject and its counterpart,

 hitTestPoint , were both part of the same method hitTest . In AS3,
Adobe broke the two up into discrete methods, both for speed
and for accurate type checking. Unlike the object version of this
method, hitTextPoint accepts x and y coordinates to check if the
DisplayObject is overlapping a particular pixel. In fact, when test-
ing against objects that have empty space (not transparent image
data like an alpha channel but actually void of data), this method

=

Actual Shape Object hitTestObject

 Figure 11.1 A shape object like a circle is still
seen as a rectangle with its maximum dimensions
by Flash’s hit detection engine.

=

Actual Image Object

(original size)

hitTestObject

 Figure 11.2 Once rotated, an image actually takes up a
larger space during collision detection than its actual
dimensions.

Chapter 11 DON’T HIT ME! 191

 has the option of accurately telling you if the shape is overlapping
the point. Obviously, this method is considerably more accurate
than hitTestObject , but it only does a single point in space. To test
a complex shape against another, you’d need to do this test many
times at points all around the shape’s outer border. This would
quickly become taxing for the processor, particularly if multiple
objects are colliding on-screen. It is most commonly used when
determining whether or not the mouse coordinates are overlap-
ping a particular shape.

 One thing that is important to note about this method is that it
expects to receive its coordinates as they would appear on the Stage.
If you are testing against a point embedded several DisplayObjects
deep in the display list and their coordinate systems do not line
up with the Stage, you’ll need to convert the coordinates to the
Stage’s system. Luckily, all DisplayObjects give you a method to do
this, called localToGlobal . It accepts a Point object and converts it
numerically to the Stage coordinate system:

 var clip1:Sprite = new Sprite();
 clip1 .x = clip1.y = 50;
 var testPoint:Point = new Point(0, 0);
 testPoint = clip1.localToGlobal(testPoint);
 trace (testPoint); //OUTPUTS X = 50, Y = 50

 In this short snippet, a Sprite is created on the Stage that has
its coordinates set to (50,50). According to the Sprite’s coordi-
nate system, its center is at (0,0). By running localToGlobal on the
Point object, we can see that according to the Stage the center is
actually at (50,50).

 Another good use for this method is when doing hit tests for
vehicles against scenery. You can use a pair of points for the two
front bumper ends and a pair for the rear.

 As Figure 11.3 illustrates, you can use Sprites to visually mark
the points on the car where you want to do a hit test. All you need
to do then is to have an identifi er separating the front ones from
those in the back. If the car backs into something solid, you want
it to be able to drive forward to pull away from it but not to be
able to back up any farther.

 Let ’s look at a simple example of how this test can be used in
practice. You can follow along in the HitTestPoint.fl a fi le in the
Chapter 11 examples folder. When you open up the FLA you’ll fi nd
two objects on the Stage: a square and two long rectangles. The
square represents our player character (and is named as such)
and the rectangles are part of the same clip called “ barriers. ” Note
that the square clip has a number of dots along its outer border;
these dots represent collision test points. When the SWF is run,
the square will move toward the mouse at a given speed but will
not be able to move past the barriers. The code for this example

 Figure 11.3 This car has two
hit points in the front and two in
the rear.

192 Chapter 11 DON’T HIT ME!

 is in three different classes: HitTestPoint.as, HitTestCoordinate.as,
and Player.as. We’ll start with the Player class:
 public class Player extends Sprite {

 private var _speed:int = 50;
 private var _hitPointList:Vector. < HitTestCoordinate > ;
 public function Player() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 }

 private function addedToStage(e:Event):void {
 _hitPointList = new Vector. < HitTestCoordinate > ();
 for (var i:int = 0; i < numChildren; i + +) {
 var child:DisplayObject = getChildAt(i);
 if (child is HitTestCoordinate)
 _hitPointList.push(child);
 }
 }
 public function get hitPointList():Vector. < HitTestCoordinate > {
 return _hitPointList;
 }
 public function get speed():int { return _speed; }
 }

 This class represents the square on the Stage. It has a given speed
at which it will move per second (50 pixels) and a vector list of its col-
lision test points. When it is added to the Stage, it enumerates these
points in the list. Other than this basic functionality, this class does
nothing. Now we’ll look at the class behind the collision points:
 public class HitTestCoordinate extends Sprite {

 private var _point:Point;

 public function HitTestCoordinate() {
 visible = false;
 _point = new Point(x, y);
 }

 public function get point():Point {
 updatePoint();
 return _point;
 }

 public function get pointGlobal():Point {
 return parent.localToGlobal(point);
 }

 private function updatePoint():void {
 _point.x = x;
 _point.y = y;
 }
 }

 This class is designed to be a visual tool for placing collision
points so they don’t have to be placed manually in code. Any
shape could be used to represent them; I chose a circle because
it is small and unobtrusive; the shape is ultimately irrelevant
because the Sprite hides itself upon creation. It stores a point
within itself representing its position. In addition to providing

Chapter 11 DON’T HIT ME! 193

 access to this point, it provides an accessor method to return the
point already converted to the global coordinate space, which is
how we’ll need to measure the point for the hit test. Now that we
have the player Sprite and its test points, we’ll look at the docu-
ment class driving this example. Note that this class makes use
of the Time class we created back in Chapter 10; if you skipped
ahead to this chapter, all you need to know is that it has a method
to return the time elapsed between frame cycles:

 public class HitTestPoint extends Sprite {

 public var barriers:Sprite;
 public var player:Player;

 public function HitTestPoint() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 }

 private function addedToStage(e:Event):void {
 addEventListener(Event.ENTER_FRAME, enterFrame, false, 0,
true);
 }
 private function enterFrame(e:Event):void {
 //CHECK DISTANCE AND PERFORM MOVES
 var distance:Number = Math.sqrt(Math.pow(player.x–mouseX,
2) + Math.pow(player.y-mouseY, 2));
 var tempPoint:Point = new Point(mouseX, mouseY);
 var dx:Number = 0;
 var dy:Number = 0;
 if (distance > player.speed * Time.deltaTime) {
 var angle:Number = Math.atan2(mouseY–player.y, mouseX–
player.x);
 dx = (player.speed * Time.deltaTime) * Math.cos(angle);
 dy = (player.speed * Time.deltaTime) * Math.sin(angle);
 tempPoint.x = player.x + dx;
 tempPoint.y = player.y + dy;
 }
 //DO CHECKS
 for each (var coordinate:HitTestCoordinate in player.
hitPointList) {
 if (barriers.hitTestPoint(coordinate.pointGlobal.x + dx,
coordinate.pointGlobal.y + dy, true)) {
 if (barriers.hitTestPoint(coordinate.pointGlobal.
x + dx, coordinate.pointGlobal.y, true)) {
 tempPoint.x = player.x;
 }
 if (barriers.hitTestPoint(coordinate.pointGlobal.x,
coordinate.pointGlobal.y + dy, true)) {
 tempPoint.y = player.y;
 }
 }
 }
 //RE-ASSIGN VALUES
 player.x = tempPoint.x;
 player.y = tempPoint.y;
 }
 }

194 Chapter 11 DON’T HIT ME!

 Really the only code happening in this class is in the enterFrame
method. It measures the distance between the mouse and the
player. If it is less than the speed of the player in a single frame,
the player attempts to move to the mouse’s exact position (this is
to prevent the player from eternally jumping back and forth over
the mouse). If it is farther away, the player will calculate its angle
relative to the mouse and then move at its given speed in that
direction. However, before the new coordinates are assigned, they
are stored in a Point object, tempPoint . A for each loop then iter-
ates through every coordinate in the player’s list. It checks these
coordinates, adjusted for the change in position, against the bar-
riers clip. If it detects a collision, it then checks individual x and y
values to determine in which direction the collision is occurring.

 If you noticed the position of the test points in the player
Sprite, you noted there are a total of eight: one for each side and
one for each corner. The distance between them is such that you
can actually coerce the square onto the barrier walls, as they are
thin enough to fi t between the points. Though it looks like a bug,
I left this behavior in to make a point (no pun intended). Even if
you fi nd a technique that works for you, you will probably have
to make some adjustments as you test. In this case, because we’re
dealing with such thin barriers, we need to position the collision
points closer together and probably have more of them. By mak-
ing these essentially little components, it is very easy to adjust the
number and positioning of these points; remember that they only
need to be slightly closer together than the smallest object you’re
testing against. That said, you might have a game where you need
to wrap one object around another, in which case the current
behavior would be ideal.

 Radius/Distance Testing — Great for Circles
 Though not an actual method of DisplayObjects, a very accurate

way of detecting collision between two circular objects (or a cir-
cular object and a point) is simply by using the distance formula.
If you know the radius of each object you want to test against
each other, you can add the two radii together to see if the sum

is greater than the distance between them.
In addition to fl at, two-dimensional circles,
this method works very well for characters
on an isometric, or angled, playfi eld.

 In Figure 11.4, two characters each have
a radius of “ personal space. ” A traditional
 hitTestObject would not work here because
the objects will visually overlap when one
passes in front of another. Instead, we need

 Figure 11.4 These two players each have a radius around
them constituting their hit area.

Chapter 11 DON’T HIT ME! 195

 to measure the distance between the two players and determine
if they are close enough to be touching. In this case, we also need
to correct for the perspective skew of the fi eld. The best way to
make this adjustment would be to have the game engine store
their coordinates as though they were being viewed from the top
down. Then the engine can test against traditional circles but ren-
der out the view by applying the perspective correction. We’ll look
at a real example of this later in Chapter 15.

 Another nice feature of this type of testing is that it is
easy to have multiple testing radii, since the only real cri-
terion is a number in pixels. Perhaps when two players
get a certain distance from each other they gain the abil-
ity to talk to each other but only at a closer distance can
they fi ght, exchange inventory, cuddle, etc.

 One more example of where this type of detection is
ideal is a billiards simulation. In a top-down pool game,
for instance, you need to be able to accurately tell when
two objects are colliding. The easiest way to do this type
of test is to measure the distance between their edges.
This scenario is illustrated in Figure 11.5.

 If you recall back to Chapter 10, the distance formula between

two points is d x x y� � � �(() ())12 2 1y . As you can see in Figure
11.5, the value of d is the distance between the two center points
of the balls. However, this isn’t the value that will tell us when
the balls are colliding, because by the time the distance between
them is 0 they will be on top of each other. To fi nd the distance
between their edges, we have to calculate d minus the two radii. If
we use the value of r for the radius and assume that the two balls
are the same size (which they would be in billiards), we can then
say that the distance between the two edges is:

d x x y y r� � � � �(() ()) .12 2 1 2

 When the value of d is 0, the two balls are touching. If it is
less than 0, they are overlapping and must have their positions
corrected.

 Rect Testing
 Another method similar to the basic hitTestObject is what is

known as rect testing . It involves getting the bounding box rect-
angle of any two DisplayObjects (using the getRect method) and
doing comparisons of intersection, overlap, etc. While this doesn’t
seem like it would be any better than the hitTestObject method, it
has a number of advantages. The fi rst is what I like to call predictive
testing; basically, once you have the rect of an object, you can move

Ball 2
(x2, y2)

Ball 1
(x1, y1)

d = √(x2 – x1) + (y2 – y1)

d

r

r

 Figure 11.5 A distance collision check
applied to two balls on a pool table.

196 Chapter 11 DON’T HIT ME!

 it around, scale it, and perform point tests against it without any
effect on the original object. To test if two objects are about to hit
with the hitTestObject method, you must actually move the objects
around, which can occasionally cause glitches in the renderer. This
is because when you update the position, scale, or rotation of a
DisplayObject on the Stage, Flash will put it in the queue to redraw.
By extracting the rectangle fi rst, you can do tests on it that don’t
involve the display list at all and save the performance.

 Another reason rect tests are a generally superior method of
detection is greater fl exibility. You can easily have multiple hit areas
on an object or determine how much two rectangles are overlap-
ping to determine the force of a collision. Let’s say you have a vehi-
cle that has multiple places in which it can take damage. You could
place Sprites (that would make themselves invisible at runtime) to
act as hit sensors, so to speak. When you needed to perform col-
lision tests, you would iterate through these sensors to get their
rects. Once you have a set of rectangles, you can test them individ-
ually or test them in combinations using the union method.

 This next example demonstrates rect testing by expanding on
a lesson from Chapter 6. Remember the SimpleShooter scolling
example? We’ll take that base code and add enemies and col-
lision detection using rects. You can follow the example in the
SimpleShooterCollisions.fl a fi le and associated classes. There are
two main additions that have been made to the fi le since we last
looked at it: the new Enemy class and some method additions to the
SimpleShooter class (now called the SimpleShooterCollisions class).

 The Enemy Class
 public class Enemy extends MovieClip {

 static public const FRAME_DESTROY:String = “ destroy ” ;

 protected var _speed:Number;
 protected var _alive:Boolean = true;

 public function Enemy(speed:Number = 0) {
 this.speed = speed;
 stop();
 }

 public function destroy() {
 _alive = false;
 gotoAndStop(FRAME_DESTROY);
 }

 public function get speed():Number {
 return _speed;
 }

 public function set speed(value:Number):void {
 _speed = value;
 }

 public function get alive():Boolean {

Chapter 11 DON’T HIT ME! 197

 return _alive;
 }
 }

 Like the Projectile class, Enemy objects have a speed parameter
assigned to them upon creation. They also have a Boolean value
specifying whether or not they are alive or dead. Finally, they have
a destroy method that toggles the alive value and plays a destruc-
tion animation. In the FLA fi le, you can see an item in the library
named Enemy that is linked to this class. It is a MovieClip with
two frames: the static fl ying position and the destruction anima-
tion. Next we’ll look at the additional methods that are now part
of the main Game class .

 The SimpleShooterCollisions Class Additions
 In the code below, the sections in bold are new to this iteration of

the game; refer to Chapter 6 for explanations on the other methods:

 protected var _enemyList:Vector. < Enemy > ;
 protected var _enemySpeed:Number = –10;
 protected var _enemyGenerator:Timer;
 protected var _enemyFrequency:int = 2000;

 public function SimpleShooterCollisions() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage, false,
0, true);
 addEventListener(Event.ENTER_FRAME, frameScript, false, 0,
true);
 _projectileList = new Vector. < Projectile > ();
 _enemyList = new Vector. < Enemy > ();
 _enemyGenerator = new Timer(_enemyFrequency);
 _enemyGenerator.addEventListener(TimerEvent.TIMER,
createEnemy, false, 0, true);
 }

 protected function addedToStage(e:Event):void {
 _stageWidth = stage.stageWidth;
 _stageHeight = stage.stageHeight;
 addEventListener(MouseEvent.MOUSE_DOWN, createProjectile,
false, 0, true);
 _enemyGenerator.start();
 }

 protected function frameScript(e:Event):void {
 movePlayer();
 moveProjectiles();
 moveEnemies();
 checkCollisions();
 moveForeground();
 moveBackground();
 }

 In the initialization functions, there are now variables for how
frequently enemies are generated, how fast they move, and Timer

198 Chapter 11 DON’T HIT ME!

 objects to create them. In the frame loop, two new methods are
called which we will look at next:

 protected function moveEnemies():void {
 for each (var enemy:Enemy in _enemyList) {
 enemy.x + = enemy.speed;
 if (enemy.x + enemy.width < 0) {
 removeEnemy(enemy);
 }
 }
 }

 protected function createEnemy(e:TimerEvent = null):void {
 var enemy:Enemy = new Enemy(_enemySpeed);
 enemy.x = _stageWidth + enemy.width;
 enemy.y = Math.random() * (_stageHeight-enemy.
height) + (enemy.height/2);
 addChild(enemy);
 _enemyList.push(enemy);
 }

 protected function removeEnemy(enemy:Enemy):void {
 if (enemy.parent = = this) removeChild(enemy);
 _enemyList.splice(_enemyList.indexOf(enemy),1);
 }

 protected function checkCollisions():void {
 var enemyRect:Rectangle;
 var projectileRect:Rectangle;
 for each (var enemy:Enemy in _enemyList) {
 if (!enemy.alive) continue;
 enemyRect = enemy.getRect(this);
 for each (var projectile:Projectile in _projectileList) {
 projectileRect = projectile.getRect(this);
 if (enemyRect.intersects(projectileRect)) {
 removeProjectile(projectile);
 enemy.destroy();
 }
 }
 }
 }

 You ’ll likely notice some similarities between how the pro-
jectiles and enemies are each moved. The createEnemy method,
called by the Timer, places new Enemy objects at the right side
of the Stage and they gradually travel across to the opposite side
in the moveEnemies function. Once everything has been moved,
the checkCollisions method runs. It loops through the two lists
of projectiles and enemies and tests rects against each other.
If a projectile hits an enemy that is still alive, the enemy will be
destroyed. Note that at this point we don’t remove the enemy.
We rely on the destroy method of the Enemy class to display the
destruction, and the object will get removed once it reaches the
left side of the Stage. When you test this SWF you will see that
when a projectile from the player hits an enemy, it explodes. Add

Chapter 11 DON’T HIT ME! 199

 a scoring mechanism to the number of ships destroyed and a way
for the player to be hurt, and you’ve got yourself a really simple
but complete game!

 Weaknesses of This Method
 Even though this type of checking is overall pretty thorough, it

will also break down in certain scenarios. If you were to increase
the speed of the ships and the projectiles enough, they would
eventually reach a point where they would jump over each other.
In a single frame, they would go from facing each other to pass-
ing each other without a collision being recorded. Granted, they
would have to be traveling very fast — faster than would prob-
ably be practical for this type of game — but that doesn’t keep
the underlying detection from being fundamentally fl awed on
some level. Because the detection is tied to the game’s frame
cycle, it also means that lowering the frame rate will lower the fre-
quency of detection, effectively creating the same problem I just
mentioned.

 Luckily , there is a solution to this problem: iterative testing.
Essentially, we want to test the space between a Sprite’s new
position and its previous position to see if a collision occurred
between frames. In our shooter example, if the distance traveled
between frame cycles is less than the width of either the projec-
tile or enemy rects, then our current test is suffi cient. However,
when their speed exceeds their width, both Sprites need to iter-
ate over their traveled distance to determine if they collided with
anything in the dead space. This is where using rectangles for the
tests are particularly helpful, because you can use a loop to move
them at a certain interval and perform checks each time. Here’s
an example of how you could perform this loop:

 for each (var enemy:Enemy in _enemyList) {
 if (!enemy.alive) continue;
 enemyRect = enemy.getRect(this);
 if (enemyRect.width < = Math.abs(enemy.speed)) {
 // ” LITE ” CHECK SUFFICIENT
 for each (var projectile:Projectile in _projectileList) {
 projectileRect = projectile.getRect(this);
 if (enemyRect.intersects(projectileRect)) {
 removeProjectile(projectile);
 enemy.destroy();
 }
 }
 } else {
 var numberOfChecks:int = Math.ceil(Math.abs(enemy.speed)/

enemyRect.width);
 for (var i:Number = 0; i < = numberOfChecks; i + +) {
 var newRect:Rectangle = enemyRect.clone();
 newRect.x - = enemyRect.width*i;

200 Chapter 11 DON’T HIT ME!

 for each (var projectile:Projectile in _
projectileList) {

 projectileRect = projectile.getRect(this);
 if (newRect .intersects(projectileRect)) {
 removeProjectile(projectile);
 enemy.destroy();
 }
 }
 }
 }
 }

 In this modifi ed example of the shooter collision check, if the
width of the enemyRect is less than the speed it moved in a sin-
gle frame, the check is performed as usual. However, if the speed
exceeds the width of the rectangle, we determine how many
checks we need to perform by dividing the speed by the width
and rounding up. We add another for loop, this time counting the
number of checks we need to perform and creating a new rect-
angle with a new position to test against. If this seems like a lot
of looping, remember that the number of checks you’re likely
to have to perform is still pretty low unless the rectangle you’re
checking against is very small. Even then, AS3 should be able to
handle it just fi ne. To be even more accurate, it would be wise to
add the same iterative checking for the projectiles as well, but I’ll
leave this to you as an exercise to complete.

 When All Else Fails, Mix ‘ n ’ Match
 Sometimes any one approach to collision detection is not

enough to get the job done effectively. That’s when a combination
of approaches can work, depending on the scenario. For exam-
ple, in the previous example we saw how the distance detection
method served well to determine collisions between two players;
however, that method doesn’t work as well to determine the over-
lap of the player Sprites on-screen. In addition to using distance
for interaction, we can do a basic hitTestObject test to determine
when they are overlapping and to adjust their indices in the dis-
play list. In that perspective skewed instance, when one player
has a lower y value it should appear behind the other player.

 The most important thing to keep in mind when applying
collision detection techniques is to keep an open mind to dif-
ferent options. Just as in the case of physics simulation, pixel-
perfect precision is rarely necessary and will end up costing you
too much in performance. It is a balance of accuracy, speed, and
fl exibility that ultimately yields the best detection. We’ll look at a
more practical example of collision detection in Chapter 15.

201
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 I ALWAYS WANTED TO BE AN
ARCHITECT

 Ever since ActionScript 3 was introduced, there has been a fl urry
of interest regarding architecture and design patterns. If you read
Chapter 1, you know that design patterns are basically a blueprint
or template for solving development problems. They are meant to
provide reusable architecture when building applications. In some
areas of the programming community, design patterns are an
essential part of application development. That said, more often
than not design patterns implemented in ActionScript tend to
hamper development because they work against the natural grain
of the language. One reason for this is that AS3 is already some-
what designed as a language to work a certain way, specifi cally
with events . In this chapter, we’ll explore some of the basic funda-
mentals of object-oriented programming (OOP) to keep in mind
as we develop, some programming styles and design patterns that
work, and when you should ignore the hype.

 OOP Concepts
 As I mentioned in Chapter 1, object-oriented programming is a

model of software design centered around the concept of objects
interacting with each other. To put it into game terms, every char-
acter on the screen in a game would be an object, as well as the
interactive elements around them. They would all have com-
mands they accept and messages they can broadcast to each
other. By having each object responsible for its own behavior, pro-
gramming becomes much more modular and fl exible. Abstractly,
this is probably not too diffi cult a concept to grasp. In practice, it
can be diffi cult to achieve without a certain amount of planning

 12

202 Chapter 12 I ALWAYS WANTED TO BE AN ARCHITECT

 and forethought. This is where design patterns arose; by using
an approved style of software design, planning an application
became easier because the template was already thought out.
Notice I said application . Many of the accepted design patterns
in the industry work extremely well for applications that perform
specifi c tasks, like productivity apps, utilities, design software,
etc. However, design patterns aren’t always the answer for game
development, because games are meant to feel more like experi-
ences than rigid, predictable business software. The best solution
to developing a game engine may not follow an accepted pattern
at all, and that’s perfectly okay. It is, however, important to follow
some basic principles when using OOP so your code is modular
and scalable.

 Encapsulation
 One of the most fundamental OOP concepts is that of encap-

sulation. Briefl y, encapsulation is the notion that an object (or
class, in ActionScript) should be entirely self-managed and con-
tained. An object should not have to know anything about the
environment in which it exists to carry out its functions, and it
should have a prescribed list of functions (or interface) that other
objects can use to tell it what to do. In order to send information
to objects outside itself, it should send messages that can be “ lis-
tened to ” by other objects. You can think of a well-encapsulated
object like a soda vending machine. All of the inner workings are
hidden away from you, and its functionality is distilled down to
the buttons you can press to select a drink and the bin in which
you can “ listen ” to receive your purchase. There is no reason for
you to know what is going on inside the machine; it might be a
couple of gnomes brewing and canning the soda right there on
the spot or it might just be a series of tubes. Either way, all you’re
interested in is getting your tasty sugar water through an inter-
face that is easy to understand and use. If you look at any of the
built-in classes in Flash, they follow this same pattern. The only
information listed about a class in the documentation is its public
methods, properties, and events. There is certainly more going on
under the hood than what we’re exposed to, but we don’t need to
know about all of it. Your goal should be the same in developing
your classes for games.

 Inheritance
 Say we have two classes, Chair and Sofa. Each of these classes

shares similar traits because they are both types of sitting furni-
ture — weight, size, number of legs, number of people they can

Chapter 12 I ALWAYS WANTED TO BE AN ARCHITECT 203

 seat, etc. Instead of defi ning all of these traits in both classes,
we could save ourselves time by creating a class called Furniture
and adding the common traits to those. We could then say that
Chair and Sofa inherit those properties by being (or extending)
Furniture. This is the concept of inheritance; all objects in the
real and virtual worlds have a hierarchy. When programming in
an object-oriented style, the key to maximizing effi ciency is to
recognize the relationships of one object to another and the fea-
tures they share. Adding a property to both Chair and Sofa then
becomes as simple as adding that property to Furniture. When
you extend a class, the new class becomes its subclass , and the
original is now referred to as the superclass ; in the previous exam-
ple, the Furniture is the superclass and the Chair and Sofa are
subclasses. There are some practical limitations to pure inheri-
tance (namely, that a class can only extend one other class) that
we’ll discuss shortly.

 Polymorphism
 Though it sounds like an affl iction one might develop in a sci-

ence fi ction novel, polymorphism is basically the idea that one
class can be substituted in code for another, and that certain
behaviors or properties of inherited objects can be changed or
 overridden . ActionScript only allows for a basic type of polymor-
phism, so that’s all we’ll cover here. Take the Chair from the previ-
ous example on inheritance. Now let’s say that we extend Chair
to make a HighChair for an infant. Certain properties of the chair
may not apply or behave differently in the HighChair vs. the nor-
mal Chair. We can override the features that are different in the
HighChair but continue to inherit those that are similar. In prac-
tice this process is not as complicated as it sounds, and I will
point it out when it is used.

 Interfaces
 A core principle of object-oriented programming is the sepa-

ration between an interface and an implementation . An interface
is simply a list of the public methods and properties, including
their types. An implementation would be a class that uses that
interface to defi ne what methods and properties will be publicly
available to other classes. This concept can be initially confusing,
so let’s look at an example. Note in this example (and throughout
the rest of this book) that interface names in ActionScript start
with a capital “ I ” by convention.

 In the section on inheritance, we used an example of a
Chair and Sofa extending from Furniture; however, if you were to

204 Chapter 12 I ALWAYS WANTED TO BE AN ARCHITECT

 introduce another piece of furniture — a Table, for example — you
would now be presented with a problem. While all three of these
objects are Furniture, they have very different uses. The Table
has no need for methods that involve people sitting down, and
the other two have no need for methods that set dishes on them.
Theoretically, you could create a whole structure of inheritance,
breaking down Furniture into SeatingFurniture, DisplayFurniture,
SupportFurniture, etc., but you can see that this is becoming
extremely unwieldy. Also, any changes that are made in large
inheritance structures can ripple down to subclasses and cre-
ate problems where none existed before. This is where interfaces
come in very handy.

 For these three classes, you can simply defi ne distinct inter-
faces that support each one’s specifi c needs. You could break
down the interfaces as such:

 ● IFurniture contains move() method.
 ● ISeatedFurniture contains sitDown() method.
 ● ILayingFurniture contains layDown() method.
 ● ITableFurniture contains setDishes() method.

 Unlike inheritance, where a class can only inherit directly
from one other class, you can use however many interfaces you
like with a single class. The Chair would implement IFurniture
and ISeatedFurniture. The Sofa would contain those two as well
as ILayingFurniture, and the Table would contain IFurniture and
ITableFurniture. Also, because interfaces can also extend one
another, the latter three interfaces could all extend the fi rst one
as well, making implementation even simpler. Now that you have
some basic interfaces defi ned for different furniture purposes,
you can mix and match them as needed to apply to a particular
piece of furniture.

 Don ’t worry if some of this abstract terminology gets confus-
ing. When we build a full-scale game in Chapter 14 you’ll be able
to see these concepts in practice.

 Practical OOP in Game Development
 By default, AS3 supports OOP and good encapsulation through

the use of events to send messages between objects. I’ve heard
AS3’s event model described as being akin to what is known as the
 Observer design pattern, but regardless of the niche it falls into it
is the native way in which the language operates. It’s important to
remember that, despite the advantages other patterns may offer,
all of them are altering the default behavior of the language if
they deviate from this model. Figure 12.1 shows the relationship
of objects to each other in AS3’s hierarchy.

Chapter 12 I ALWAYS WANTED TO BE AN ARCHITECT 205

P
ub

lic
 In

te
rfa

ce

P
ub

lic
 In

te
rfa

ce

Dispatch Events

Dispatch Bubbling
Events*

Dispatch Events

Object1
(root
level)

Object2 Object3

EventDispatcher / Display List* Hierarchy

 Figure 12.1 The basic event and communication model for AS3.

 In this illustration, Object1 is at the top of the hierarchy, either
as the root DisplayObject or just a generic data EventDispatcher.
It has a reference to Object2 and can give it commands directly
via its public interface because it knows Object2’s type. Object2,
however, has no way of knowing what its parent is without break-
ing encapsulation, but Object2 should be able to function regard-
less of what its parent object is. In order to send information out,
it dispatches events. If Object1 adds itself as a listener to Object2,
it will receive these events. The same is true between Object2 and
Object3. If all of these are DisplayObjects, any events Object3 sets
to bubble will eventually reach Object1 if it is listening for them.
You can think of these objects as a line of people all facing one
direction. The person at the back of the line can see all the other
people and address each one directly, even if it has to go through
the people directly in front of them. However, everyone else has
no way of knowing whom, if anyone, is directly behind him or her
or if they are even listening. All they can do is say something (dis-
patch an event); they don’t have to care whether or not it is heard.
By avoiding a reliance on knowing the hierarchy above any par-
ticular object, adding new objects to the hierarchy becomes rela-
tively trivial.

 In Figure 12.2, we have added Object4 to the second level of
the hierarchy. All that has to change is that Object1 needs to know
the correct type of Object4 to properly address its public inter-
face, and Object4 needs to know the same information about
Object2. Granted, this is a very abstract and simple example, but
a well-thought out structure will allow you to make changes like
this without dire consequences to the rest of your application.
Because games can vary so widely in their mechanics and behav-
ior, and because elements of gameplay tend to change through-
out play testing, having a fl exible system is a requirement when
building a game engine.

206 Chapter 12 I ALWAYS WANTED TO BE AN ARCHITECT

 The Singleton: A Good Document Pattern
 Although I don’t subscribe to any one design pattern for game

development, I do like to use one particular pattern for the docu-
ment class of my games. That pattern is known as the Singleton. The
name sort of implies the concept behind it. A class that is a Singleton
will only ever have one instance of itself in memory and provides a
global point of access to that instance. In the context of a document
or top-level class in a site, it ensures that there is always an easy way
to get back to some basic core functionality. Say, for example, that all
the text for my game is loaded in from an external XML fi le because
it is being localized into other languages. I don’t want to load the
XML over and over again whenever I need it, so it makes sense for
my document class to be responsible for loading it and then making
it available to all the objects down the display list. The Singleton pat-
tern provides a good way of doing this, because it essentially creates
a global access point from anywhere, even non-DisplayObjects. This
is a double-edged sword, however, because abuse of this pattern to
store too much data or rely too heavily on references back to the
main class will break your encapsulation. In practice, you should
never put references to a Singleton class inside an engine compo-
nent you intend to reuse, as this will make it too rigid. It should be
reserved for classes that are being built for that specifi c game. Let’s
look at an example of a class set up as a Singleton. This fi le can be
found in the Chapter 12 folder under SingletonExample.as.

 package {

 import fl ash.display.MovieClip;

 public class SingletonExample extends MovieClip {

 static private var _instance:SingletonExample;

 public function SingletonExample(se:SingletonEnforcer) {
 if (!se) throw new Error(“ The SingletonExample class is
a Singleton. Access it via the static getInstance method. ”);
 }

P
ub

lic
 In

te
rfa

ce

P
ub

lic
 In

te
rfa

ce

Dispatch Events

Dispatch Bubbling
Events*

Dispatch EventsDispatch Events

Object1
(root
level)

Object2 Object2

P
ub

lic
 In

te
rfa

ce

Object4

EventDispatcher / Display List* Hierarchy

 Figure 12.2 The same model as Figure 12.1 but with a new object inserted into the hierarchy.

Chapter 12 I ALWAYS WANTED TO BE AN ARCHITECT 207

 static public function getInstance():SingletonExample {
 if (_instance) return _instance;
 _instance = new SingletonExample(new SingletonEnforcer());
 return _instance;
 }
 }
 }
 internal class SingletonEnforcer { }

 Traditionally , in other languages, a Singleton class would have
a private constructor function, preventing you from calling it at
all; however, in AS3, all constructors must be public, so we have
to put in an error check to enforce proper use. The class keeps
a static reference to its only instance, and the static getInstance
method returns it. To prevent someone from arbitrarily instan-
tiating the class, we create a secondary private class that is only
accessible by the main document. Think of it like the secret pass-
word for the Singleton’s constructor. Only the getInstance method
knows how to properly create a new SingletonExample instance,
as it will fail without this private class. This is a pretty com-
monly accepted way of dealing with basic Singleton classes in
AS3, although this particular example will also break when used
as a document class. This is because Flash will automatically try
to instantiate the class to create the display list hierarchy. To get
around this, we must modify the time of instantiation, alter the
way the constructor works, and eliminate the private class. This
new version can be found in SingletonExampleDocument.as.

 package {

 import fl ash.display.MovieClip;

 public class SingletonExampleDocument extends MovieClip {

 static private var _instance:SingletonExampleDocument;

 public function SingletonExampleDocument() {
 if (_instance) throw new Error(“ This class is a
Singleton. Access it via the static SingletonExampleDocument.
getInstance method. ”);
 _instance = this;
 addEventListener(Event.REMOVED_FROM_STAGE, onRemove,
false, 0, true);
 }

 private function onRemove(e:Event):void {
 _instance = null;
 }

 static public function getInstance():SingletonExampleDocument {
 if (_instance) return _instance;
 _instance = new SingletonExampleDocument();
 return _instance;
 }
 }
 }

208 Chapter 12 I ALWAYS WANTED TO BE AN ARCHITECT

 As you can see in this modifi ed version, we allow instantia-
tion through the constructor once, relying on Flash to do it for us.
When it is created, the constructor will throw an error from here
on out. The one other addition we made is in case this document
is loaded into another SWF. If this game is loaded into a con-
tainer that has the ability to load and unload it multiple times, it’s
best to have the Singleton clean up after itself once it is removed
from the Stage. This will prevent persistence of the Singleton in
memory.

 For another example of a Singleton in practice, refer back to
Chapter 7 on audio. The SoundEngine class we created there fol-
lowed the same pattern. These types of controllers, or “ engines, ”
are good candidates for Singletons because they need to be easily
accessible from anywhere in your game.

 Summary
 If you are interested in learning more about design patterns to

use in your game development, there are links to good articles
and other books on this book’s website, fl ashgamebook.com. The
bottom line to remember is to always do what makes sense for
your situation and don’t go overboard with a solution that isn’t
applicable to what you are doing. Ultimately, if your game is no
fun, no one will care that it is a perfectly implemented, fl awlessly
designed, model-view-controller pattern.

209
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 WE’VE ALL BEEN THERE

 Now that we’ve just completed a chapter on best practices
and ideal scenarios, it’s only fair to cover some “ worst practices ”
and basic pitfalls you should avoid. One of the most common
phrases I hear developers (including myself from time to time)
use to justify lackluster coding is “ Well, this project just didn’t
afford me the time. ” The implication here is that if the developer
had had more time to do the work it would have been done bet-
ter. I certainly don’t disagree with that premise. Before I worked
at a game company, I was employed by an interactive ad agency.
Anyone who has ever worked at an ad agency knows that there is
never enough time on any project, ever . Forget formalized design
patterns and wireframes; we’re talking about timelines where
it’s hard to fi nd time to use the bathroom. I have built the core
mechanics for a game in less (but not much less) than 24 hours;
it wasn’t pretty, but it got the job done. I think most reasonable
people could agree that a day or two turnaround for any game,
regardless of complexity, is utterly absurd, and any project man-
ager or account executive who agrees to such a timeline should
be fl ogged publicly.

 Despite all of this, I do think that abandoning all sense of
 standards, forward thinking, or just reasonable programming
principles because you were given a ridiculous schedule is not a
good practice. In my experience, coding a game rigidly and badly
saves no more real time than coding it in a halfway decent way,
so why not strive for the higher standard? In this chapter, I’ll
 outline some examples of the least you can do, even when you
don’t have much time on your hands. If you follow these basic
principles when you’re in crunch time, you (and anyone else who
has to look at your code) will be thanking yourself later on down
the road.

 13

210 Chapter 13 WE’VE ALL BEEN THERE

 Basic Encapsulation — Classes
and Containers

 I recently had to make edits to a game where the developer
had, for the supposed sake of simplicity and speed, put virtually
all of the code for the game, menu screens, and results screen in
the same document class. Needless to say, it was an organiza-
tional nightmare. There was absolutely nothing separating game
logic from the navigational structure or the leaderboard code.
I’m sure at the time this kept the developer from having to switch
between fi les, but it came with an ultimately very high cost.
The code was one ugly step up from just having it all tossed on
the fi rst frame of the timeline. Here are the steps the developer
should have taken to improve the readability and editability of his
code, in order of importance:

 ● Move all game logic to its own class. At the bare minimum,
any code that controls the mechanics of a game should be
encapsulated by itself, away from irrelevant information.
This is the core of the game and the most likely candidate
for reuse; it should not be lumped in with everything else.

 ● Move code for each discrete screen or state of the game to its
respective class. If the game has a title screen, rules screen,
gameplay screen, and results screen, there should be a class
for each. In addition, the document class should be used to
move between them and manage which one is active.

 This doesn’t sound unreasonable, does it? It’s hardly a formal-
ized structure, but it can stand up to far more scrutiny than the
previous “ structure. ”

 Store Relevant Values in Variables
and Constants

 If you work with string or numeric properties that represent
a value in your code (such as the speed of a player, the value of
gravity in a simulation, or the multiplier for a score bonus), store
them in a variable or constant. “ Well, duh, ” you’re probably
thinking right now, “ Who wouldn’t do that?!? ” Sadly, I have to say
I’ve seen a lot of code over the years that was hurriedly thrown
together and the same numeric values were repeated all over the
place instead of using a variable. Here’s an example:

 player .x + = 10 * Math.cos(angle);
 player .y + = 10 * Math.sin(angle);

 In their haste, a developer was probably testing values to deter-
mine the proper speed at which to move the player Sprite and just
used the number directly in the equation. It would have taken

Chapter 13 WE’VE ALL BEEN THERE 211

 virtually no extra time to simply assign the number to a variable
(speed) and then use the variable in the code instead:

 var speed:Number = 10;
 //
 player .x + = speed * Math.cos(angle);
 player .y + = speed * Math.sin(angle);

 Now , if something changes in the game before it’s fi nished that
requires a change in player speed, it will require altering only a
single line of code vs. however many places that value was used.
While this seems like a shamefully simple exercise, a number of
otherwise good developers have been guilty of this at one time
or another because they were rushing. Although this example is
obvious, there are other instances of this phenomenon that might
not occur to developers immediately. One example that comes to
mind is the names of event types. Many Flash developers with a
background in ActionScript 2 are used to naming events with the
use of raw strings:

 addEventListener (“ init ” ,initMethod);

 In ActionScript 3, Adobe introduced constants: values that will
never change but are helpful to have enumerated. One of the key
uses of constants is in naming event types:

 public static const INIT:String = “ init ” ;
 addEventListener (INIT, initMethod);

 There are a number of reasons for following this syntax. The
fi rst is that is follows the example from above. If you are going to
use a value more than once anywhere in your code, it should be
stored in memory to make changing it easier. The second reason
is that by declaring event types and other constants in all capital
letters, they stand out in your code if someone else is looking at
them. Perhaps the most important reason, however, is compile-
time checking. When Flash compiles your SWF, it runs through all
the code to look for misuse of syntax and other errors.

 addEventListener (“ init ” , method1);
 addEventListener (“ inti ” , method2);

 If I had the previous two lines of code in different parts of the
same class, Flash would not throw an error when I compiled it.

 public static const INIT:String = “ init ” ;
 addEventLister (INIT, method1);
 addEventLister (INTI, method2);

 Had I used a constant value from above and misspelled the
name of the constant, Flash would have warned me about my
mistake when I tried to compile it. This type of checking is utterly
invaluable at the 11th hour when you’re trying to get a project out
the door and don’t have time to debug inexplicable errors.

212 Chapter 13 WE’VE ALL BEEN THERE

 Don’t Rely on Your Stage
 When developers are working on a game in a crunch, they

are often doing so in a vacuum. They can take certain things for
granted, like the size of the Stage of their SWF; however, if that
SWF is loaded into another container of different dimensions, the
game’s mechanic can be adversely affected. For example, the fol-
lowing lines of code center an object horizontally and vertically
on the Stage, assuming its container lines up with the upper-left-
hand corner of the Stage and its registration point is in its center:

 player .x = stage.stageWidth/2;
 player .y = stage.stageHeight/2;

 If the SWF containing this code is loaded into a larger SWF, it
is unlikely it will still have the desired effect. The better option in
this case is to use the less frequently known width and height val-
ues in the LoaderInfo object for the SWF. Every SWF knows what
its intended Stage size should be, and that information is stored
in an object that is accessible to every DisplayObject in the dis-
play list. The two lines above would simply become:

 player .x = loaderInfo.width/2;
 player .y = loaderInfo.height/2;

 These values will stay consistent even if the Stage does not.

 Don’t Use Frameworks or Patterns That You
Don’t Understand or That Don’t Apply

 This may sound like an odd item in a list of bad practices to
avoid when you’re pressed for time, but it is yet another very
real scenario I’ve witnessed with my own eyes. It is the oppo-
site of gross underengineering — obscene overengineering — and
it is every bit as much of a crime, as development crimes go. An
example might be trying to apply a complex design pattern to a
very simple execution. Some developers are tempted to rely on
the many OOP frameworks that exist because of the generosity
of the Flash community as a way to speed up development in a
crunch. However, the developer who doesn’t really understand
the framework and how to implement it effectively will have
essentially added an enormous amount of bulk to the project for
no reason and will often end up “ rewiring ” how the framework is
intended to function because it should never have been used in
the fi rst place.

 Another project I recently had to make edits to was created
with a model – view – controller (MVC) framework designed to force
adherence to the design pattern of the same name. However,
because of the architecture of the framework, related code was

Chapter 13 WE’VE ALL BEEN THERE 213

 scattered over at least 20 different class fi les. Some of the classes
had only one or two methods or properties associated with them,
making it a bread-crumb trail to attempt to debug. It was a clas-
sic example of overengineering; the game was not complicated
or varied enough to warrant such a robust system, but the devel-
oper equated using an OOP framework with good programming
so they used it anyway. As a result, it took probably twice as long
to fi x bugs in the game because it was hard to track down where
the logic for different parts of the game was stored.

 Know When It’s Okay to Phone It in and
When It Defi nitely Isn’t

 If you’re producing games independently of an employer or cli-
ent, either for profi t or an experiment, the stakes are much lower.
Fewer people, if any, are ever going to see your code, let alone
have to work with it. You can get away with some sloppier stan-
dards or rushed programming. In fact, some of the best founda-
tions for games I’ve seen have been born out of hastily thrown
together code brainstorms. In experimentation, all you’re inter-
ested in is the idea behind a mechanism. However, the moment
you start having to answer to anyone else about your code, be it
a client or a coworker, it is vital to take the time to do it right . No
one is perfect, and no one’s code is perfect, either, but there’s a
huge visible difference between someone who made a genu-
ine effort and someone who did not. Even if you’re independent
now, don’t turn a blind eye to your coding practices — you might
want to get a job some day, and many employers like to see code
samples.

 Conclusion
 Now that we’ve covered the least you can do, commit yourself

to striving for the best you can do. Learning to program well
and effectively is a journey, and given the ever-changing land-
scape of new languages, technologies, and platforms, no one
will ever reach a destination where they can say “ I’m done! ” Well,
someone might, but they’ll be left in the dust pretty quickly by
everyone else.

This page intentionally left blank

215
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 MIXUP — A SIMPLE ENGINE

 Up to this point, we’ve gone through many examples of differ-
ent aspects of game development. Now let’s pull them together
to create a simple game from start to fi nish. In this chapter, we
will cover how to create a basic image scramble game we’ll call
MixUp. This is a popular type of puzzle game where an image
is broken into rectangles on a grid and reshuffl ed. Players must
click on these pieces to interchange their positions and ultimately
restore the original image. The diffi culty of these puzzles is a
combination of the number and size of the rectangles the image
is broken into and the amount of detail in the imagery. We’ll cre-
ate an engine that will support any resolution of source image
(within reason and memory restrictions) and divide it dynami-
cally into any number of grid rectangles. We’ll then see how this
basic engine can be easily extended to support other source
images like video or a live camera feed. Let’s get started!

 When defi ning the parameters for a game like this, it’s impor-
tant to lay out a basic rules set before starting to program. We
won’t do a full design document, as this is a simple game and
that’s not the point of this exercise. Instead, we’ll just do a bul-
let-point list of the feature set and components so we know what
we’re dealing with:

 Game screens and interface elements:
 ● Title screen

 1. Game logo
 2. Play button
 3. How to Play button

 ● How to Play popup
 1. Rules textfi eld
 2. Close button

 ● In-game screen
 1. Game status displays
 2. Quit button

 14

216 Chapter 14 MIXUP — A SIMPLE ENGINE

 ● Results screen
 1. Game results textfi elds
 2. Play Again button
 3. Back to Title Screen button

 In-game functionality and rules:
 ● Game will shuffl e pieces on a grid, with no piece in its orig-

inal position.
 ● Game will include timer that will count up from 0.
 ● Game will dispatch events when certain things happen,

including:
 1. Player completing puzzle
 2. Player moving two pieces
 3. Player moving at least one piece to its correct position

 ● Game will be played with the mouse:
 1. Players will click on a piece to select it.
 2. If they click on the same piece again, they will de-select it.
 3. If they click on another piece that is not locked down,

the two selected pieces will trade positions and the game
will check to see if either are now in the right place.

 4. Players will not be able to move pieces that are correctly
positioned.

 We could go into even more detail, but this should be enough to get
us started. Game design is an iterative process, meaning it grows and
changes as it progresses. It is totally reasonable to change mechanics
that don’t make sense or prove not to work once in practice, but this
initial layout allows us to try to predict potential problems and save
time in the long run by anticipating trouble down the road.

 Now that we have the basic guidelines for the game down, we
can look at the fi le and class structure. In this case, we’re going
to work with one main FLA fi le that will house the game assets,
and we’ll use a number of classes and interfaces to control differ-
ent aspects of the game functionality. Here’s a quick breakdown
of the classes we’ll use and what each one is responsible for:

 ● MixUp — Document class; manages game state and screens,
retains static game history, handles display of rules

 ● Title — Title/menu screen
 ● RulesPanel — Handles display and closure of the How to

Play popup
 ● Game — Container; shows GameBoard, timer, and UI

elements
 ● GameBoard — Creates puzzle from source image, shuffl es

pieces, and handles game logic
 ● IGamePiece — Interface that defi nes the methods for what

constitutes a game piece:
 1. GamePiece — Implements IGamePiece and defi nes

specifi c behavior for pieces (with regard to animation,
mouse interaction, etc.)

Chapter 14 MIXUP — A SIMPLE ENGINE 217

 ● ISourceImage — Base interface for plugging in different
image sets or video for use with the GameBoard:
 1. SourceImageEmbedded — Uses images embedded in

the SWF
 2. SourceImageCamera — Uses camera feed

 ● GameHistory — Simple data class containing static proper-
ties for the player’s performance each time they play a round

 ● Results — Screen displaying game results when game is over
 We ’ll work through each of these classes and the basic setup of

the FLA one by one. So that we have some context for the code
we’ll be working with, we’ll start with the structure of the MixUp
.fl a fi le. You can open it from the Chapter 14 Examples folder that
you downloaded (or should download) from the book’s website,
fl ashgamebook.com.

 The Main Document
 When you open up MixUp.fl a and look at the library and time-

line, you’ll notice a couple of things. First, they are very simple.
The timeline has three labels and three matching pieces of con-
tent for each one: the title screen, the game screen, and the
results screen. They are given their own discrete space on the
timeline for organizational purposes and to simplify screen man-
agement. In the library, there are only a handful of items. Each
screen is contained within its respective clip; there are a couple
of different buttons and an image to be used as the source for
the puzzle. Each of the screens is linked to a class with the same
name. If you look at the document properties panel, you’ll also
see that the document is pointing to a class called MixUp. We’ll
start here fi rst and work our way inward through the structure of
the game.

 The MixUp Class
 This document class fi le controls the main logic for navigat-

ing between the screens in the game and displaying the rules
panel. As the top level in our game, it is the one class that persists
throughout the entire experience and is in the unique position of
storing useful data such as the current session’s game history (for
showing best scores, average scores, etc.).

 public class MixUp extends MovieClip {

 static public const FRAME_TITLE:String = "title";
 static public const FRAME_GAME:String = "game";
 static public const FRAME_RESULTS:String = "results";

 static public var gameHistory:Array = new Array();

218 Chapter 14 MIXUP — A SIMPLE ENGINE

 protected var _imageNameList:Array = ["goldengate.jpg"];
 protected var _imageList:Vector.<ISourceImage>;

 public var title:Title;
 public var game:Game;
 public var results:Results;

 public function MixUp() {
 enumerateFrameLabels();
 addEventListener(FRAME_TITLE, setupTitle, false, 0, true);
 addEventListener(FRAME_GAME, setupGame, false, 0, true);
 addEventListener(FRAME_RESULTS, setupResults, false, 0, true);
 createImagePool();
 }

 protected function createImagePool():void {
 _imageList = new Vector.<ISourceImage>();
 for each (var imageName:String in _imageNameList)
 _imageList.push(new SourceImageEmbedded(imageName));
 }

 There are only a few variables in this class: one for each of the
main screens, an array for the game history, and a constant defi n-
ing each of the frame labels. In addition to these public properties
are two lists. One stores the list of available images to use for the
puzzle (in this case, the one that is embedded in the library), and
the other will store the list of image objects that will be used by
the game. In the constructor for the class, enumerateFrameLabels
is called and listeners are added to each of the frame names. It
also calls createImagePool , which runs through the list of image
names and creates new SourceImageEmbedded objects for each
of them. More on this later when we get to the in-game classes.

 private function dispatchFrameEvent():void {
 dispatchEvent(new Event(currentLabel));
 }

 private function enumerateFrameLabels():void {
 for each (var label:FrameLabel in currentLabels)
 addFrameScript(label.frame–1, dispatchFrameEvent);
 }

 These two functions use the addFrameScript method to dis-
patch events whenever a frame label is hit. Combined with the
listeners in the constructor, events will be fi red when the title
screen, game screen, and results screen are reached.

 protected function setupTitle(e:Event):void {
 stop();
 title.addEventListener(Title.PLAY_GAME, playGame, false, 0,
true);
 title.addEventListener(Title.SHOW_RULES, showRules, false,
0, true);
 }

 protected function showRules(e:Event):void {
 var rules:RulesPanel = new RulesPanel();

Chapter 14 MIXUP — A SIMPLE ENGINE 219

 rules.x = stage.stageWidth/2;
 rules.y = stage.stageHeight/2;
 addChild(rules);
 }

 protected function playGame(e:Event):void {
 gotoAndStop(FRAME_GAME);
 }

 protected function mainMenu(e:Event):void {
 gotoAndStop(FRAME_TITLE);
 }

 When the title screen is reached, we attach listeners to it
for two events that are defi ned in the Title class: PLAY_GAME
and SHOW_RULES. When showRules is called, it creates a new
RulesPanel instance, positions it, and adds it to the Stage. The
playGame method does exactly what you’d expect it to do — go
to the frame with the game in it. The mainMenu method will be
used later to return to the title screen, but it is included here for
consistency.

 protected function setupGame(e:Event):void {
 stop();
 game.init(_imageList[0], 3, 4);
 setTimeout(game.startGame, 1500);
 game.addEventListener(Game.GAME_OVER, gameOver, false, 0,
true);
 }

 protected function gameOver(e:Event):void {
 var history:GameHistory = new GameHistory(true, e.target.
timeElapsed, e.target.movesMade);
 history.formattedTime = e.target.timeElapsedText.text;
 gameHistory.unshift(history);
 gotoAndStop(FRAME_RESULTS);
 }

 protected function setupResults(e:Event):void {
 results.addEventListener(Results.PLAY_AGAIN, playGame,
false, 0, true);
 results.addEventListener(Results.MAIN_MENU, mainMenu,
false, 0, true);
 }

 These three methods follow much the same pattern of doing
initialization when a frame label is reached. The setupGame
method runs functions on the Game object and adds a listener
for the GAME_OVER event. We’ll return to the gameOver method
later once we’ve progressed through the game logic that will get
us there. Suffi ce it to say that we’ll store stats about the player’s
most recent game in the history array. Now that the document
class is defi ned, we’re ready to delve into each of the individual
screens.

220 Chapter 14 MIXUP — A SIMPLE ENGINE

 The Title Class
 Most games have some sort of main menu of options; few drop

you directly into the action without explanation or pause. In this
example, we have only two options on the title screen, which
keeps it simple for explanation — a player can choose to start a
game or fi rst view the rules:

 public class Title extends MovieClip {

 static public const PLAY_GAME:String = "playGame";
 static public const SHOW_RULES:String = "showRules";

 public var playButton:SimpleButton;
 public var rulesButton:SimpleButton;

 public function Title() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 }

 private function addedToStage(e:Event):void {
 playButton.addEventListener(MouseEvent.CLICK,
playButtonClick, false, 0, true);
 rulesButton.addEventListener(MouseEvent.CLICK,
rulesButtonClick, false, 0, true);
 }

 private function playButtonClick(e:MouseEvent):void {
 dispatchEvent(new Event(PLAY_GAME));
 }

 private function rulesButtonClick(e:MouseEvent):void {
 dispatchEvent(new Event(SHOW_RULES));
 }
 }

 As you can see, the logic behind this screen is very simple.
When either of the two buttons on the Title screen is clicked,
events are dispatched with names corresponding to the listen-
ers we saw in the MixUp class. Adding buttons to this screen is as
simple as adding a constant for the event it generates, a variable
for the DisplayObject, and a listener for button click.

 The RulesPanel Class
 From the Title screen, the player can choose to view the rules

panel. In the MixUp class, we saw how this panel is instantiated and
added to the Stage. Now we’ll look at the internal logic behind it:

 public class RulesPanel extends Sprite {

 public var closeButton:SimpleButton;

 public function RulesPanel() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 }

Chapter 14 MIXUP — A SIMPLE ENGINE 221

 private function addedToStage(e:Event):void {
 TweenLite.from(this, .4, { y : -height });
 closeButton.addEventListener(MouseEvent.CLICK,
closeButtonClick, false, 0, true);
 }

 private function closeButtonClick(e:MouseEvent):void {
 closeButton.removeEventListener(MouseEvent.CLICK,
closeButtonClick);
 TweenLite.to(this, .4, { y : -height, onComplete:parent.
removeChild, onCompleteParams:[this] });
 }
 }

 When the rules panel becomes part of the display list, it ani-
mates itself in from the top of the screen. It also adds a listener to
the Close button that reverses this animation and upon comple-
tion removes the panel from the Stage. Because there are no refer-
ences to the panel other than the display list, once it is removed
from the Stage Flash will garbage collect it. Now we’re ready to dive
into the Game class and see the logic going on behind the scenes.

 The Game Class
 We ’ve now reached the meat of the code, so to speak.

The Game class is a composite of a few different components.
The fi rst and most important is the GameBoard class, which we
will look at shortly. The GameBoard controls the actual logic that
keeps track of each of the images, shuffl es them, and determines
whether or not the puzzle has been completed. In addition, the
Game class stores an instance of whatever the source image is — in
this case, a still image from the library. Finally, this class manages
all of the user interface relevant to the game, like the Quit but-
ton and text fi elds. We’ll start breaking it down with the variable
declarations:

 public class Game extends MovieClip {

 static public const GAME_OVER:String = "gameOver";

 public var piecesLeftText:TextField;
 public var movesMadeText:TextField;
 public var timeElapsedText:TextField;
 public var quitButton:SimpleButton;

 private var _sourceImage:ISourceImage;
 private var _gameBoard:GameBoard;
 private var _totalPieces:int;
 private var _piecesLeft:int;
 private var _movesMade:int;
 private var _timeElapsed:int;
 private var _timer:Timer;

222 Chapter 14 MIXUP — A SIMPLE ENGINE

 public function Game() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 _timer = new Timer(1000);
 _timer.addEventListener(TimerEvent.TIMER, timerUpdate,
false, 0, true);
 }

 private function addedToStage(e:Event):void {
 quitButton.addEventListener(MouseEvent.CLICK, gameOver,
false, 0, true);
 }

 There are three TextField objects that display how many pieces
are left, how many moves have been made, and how much time
has elapsed, as well as a button the player can use to quit the
game. Each of the private variables stores some piece of informa-
tion related to gameplay, including the source image in the form
of an interface (rather than a class). Along with the GameBoard,
we’ll cover this interface in a subsequent section. The construc-
tor sets up the Quit button and also creates a Timer object. The
Timer will fi re every second (or 1000 milliseconds) once started,
creating a very basic clock. Whenever a second passes, the Timer
will call timerUpdate .

 public function get movesMade():int { return _movesMade; }
 public function set movesMade(value:int):void {
 _movesMade = value;
 movesMadeText.text = String(_movesMade);
 }

 public function get piecesLeft():int { return _piecesLeft; }
 public function set piecesLeft(value:int):void {
 _piecesLeft = value;
 piecesLeftText.text = String(_piecesLeft);
 }

 public function get timeElapsed():int { return _timeElapsed; }
 public function set timeElapsed(value:int):void {
 _timeElapsed = value;
 var timeString:String;
 if (_timeElapsed < 60) {
 timeString = "0:";
 } else {
 timeString = String(Math.fl oor(_timeElapsed / 60)) + ":";
 }
 var seconds:int = _timeElapsed % 60;
 if (seconds < 10) {
 timeString + = "0" + String(seconds);
 } else {
 timeString + = String(seconds);
 }
 timeElapsedText.text = timeString;
 }

Chapter 14 MIXUP — A SIMPLE ENGINE 223

 This set of six methods comprises the accessor, or getter/setter,
methods we’ll use for this class. The get function simply returns
the value of the private variable. The set function sets the private
variable and also updates the corresponding TextField object. In
the case of the timeElapsed property, in particular, the time must
be updated from just a number of seconds to a standard format-
ting of “ mm:ss. ”

 public function init(sourceImage:ISourceImage,
 rows:int,
 columns:int,
 imageWidth:int = 0,
 imageHeight:int = 0,
 boardPosition:Point = null):void {
 _totalPieces = piecesLeft = rows * columns;
 movesMade = 0;
 _sourceImage = sourceImage;
 _gameBoard = new GameBoard(_sourceImage, GamePiece, rows,
columns, imageWidth, imageHeight);
 if (!boardPosition) boardPosition = new Point();
 _gameBoard.x = boardPosition.x;
 _gameBoard.y = boardPosition.y;
 _gameBoard.createBoard();
 addChildAt(_gameBoard, 0);
 _gameBoard.shuffl eBoard();
 }

 public function startGame():void {
 _gameBoard.activate();
 _gameBoard.addEventListener(GameBoard.GAME_OVER,
pauseBeforeGameOver, false, 0, true);
 _gameBoard.addEventListener(GameBoard.PIECE_SWAP,
pieceSwap, false, 0, true);
 _gameBoard.addEventListener(GameBoard.PIECE_LOCK,
pieceLock, false, 0, true);
 timeElapsed = 0;
 _timer.start();
 }

 You may have noticed that these two public methods are the
same two called by the MixUp class earlier. The init function sets
up the game for play, and startGame activates the GameBoard for
mouse input and starts the Timer. There are a number of param-
eters for init , including the source image object to be used for
the puzzle, the number of rows and columns the grid should be
divided into, the width and height in pixels of the image that will
be displayed, and the physical position of the GameBoard object
in the form of a Point. Only the source image, rows, and columns
are required. By default, we will use the native width and height
of the image we’re slicing up and set the board at (0,0). The total
number of pieces for the puzzle is calculated as the number of
rows multiplied by the number of columns. The init function is
also where the GameBoard object is actually created. Most of the

224 Chapter 14 MIXUP — A SIMPLE ENGINE

 same parameters that were passed into the function are simi-
larly passed along to the GameBoard constructor, and it is sub-
sequently added to the Stage. The GameBoard will dispatch a
number of events as things occur in the game, so in startGame we
add listeners for these events. We’ll look at these listeners next:

 private function pauseBeforeGameOver(e:Event):void {
 _timer.stop();
 setTimeout(gameOver, 2000, null);
 }

 private function pieceSwap(e:Event):void {
 movesMade++;
 }

 private function pieceLock(e:Event):void {
 piecesLeft––;
 }

 private function gameOver(e:Event):void {
 _timer.stop();
 _gameBoard.deactivate();
 _gameBoard.cleanUp();
 dispatchEvent(new Event(GAME_OVER));
 }

 private function timerUpdate(e:TimerEvent):void {
 timeElapsed = _timer.currentCount;
 }

 The method pauseBeforeGameOver merely stops gameplay and
inserts a two second pause before calling the gameOver method
so players have a moment to see the image they have completed.
When a piece swap is made, the number of moves is incremented,
and when a piece is locked into its correct position, the number
of pieces is decremented. Finally, after the post-game pause is
complete, gameOver deactivates the GameBoard, performs clean
up, and dispatches the GAME_OVER event back up to the MixUp
class.

 The Interfaces
 Before we proceed any further into the GameBoard engine,

we need to look at the two interfaces that will be used in it, which
we’ve already seen glimpses of in the MixUp and Game classes.
As you’ll recall from Chapter 4, an interface simply defi nes the
names and parameters of public methods that will be used
in a class. There is no actual logic performed in an interface.
They are used to supply a common interface through which
classes of disparate types can be used in the same context.
The fi rst is ISourceImage . It is this interface that must be imple-
mented by any source of imagery the game will use for its puzzle,

Chapter 14 MIXUP — A SIMPLE ENGINE 225

 regardless of whether it is still embedded photos, external photos,
video, etc.:

 package {

 import fl ash.display.BitmapData;

 public interface ISourceImage {

 function getImages(rows:int, columns:int, width:int = 0,
height:int = 0):Vector.<BitmapData>;
 function cleanUp():void;
 function destroy():void;
 }
 }

 Classes that implement this interface need only have three
methods defi ned in them. The fi rst method, getImages , is arguably
the most important. It needs to return a vector list of BitmapData
objects representing the sliced-up original image, based on the
number of rows and columns. The next two, cleanUp and destroy ,
do pretty much what you would expect based on their names.
The cleanUp method will be called when the GameBoard wants
to dispose of the sliced-up images used to create the puzzle. The
 destroy method takes it one step further and also is intended to
dispose of the original source image as well. Because BitmapData
takes up a lot of space in memory, it is important to provide easy
ways of freeing up that space.

 The other interface used with the GameBoard class is called
 IGamePiece . It defi nes the methods that will be used by the click-
able game pieces that will make up the game board. Each game
piece will have a BitmapData object from the vector list returned
by ISourceImage.getImages() :

 package {

 import fl ash.display.BitmapData;
 import fl ash.events.IEventDispatcher;

 public interface IGamePiece extends IEventDispatcher {

 //DisplayObject Properties
 function get x():Number;
 function set x(value:Number):void;
 function get y():Number;
 function set y(value:Number):void;
 function get width():Number;
 function set width(value:Number):void;
 function get height():Number;
 function set height(value:Number):void;

 //GamePiece-specifi c Methods
 function select():void;
 function deselect():void;
 function activate():void;
 function deactivate():void;

226 Chapter 14 MIXUP — A SIMPLE ENGINE

 function movePiece(x:Number, y:Number):void;
 function lock():void;

 //GamePiece-specifi c Accessors
 function get image():BitmapData;
 function set image(value:BitmapData):void;
 function get index():int;
 function set index(value:int):void;
 function get currentIndex():int;
 function set currentIndex(value:int):void;
 }
 }

 This interface has considerably more defi nitions in it, because
unlike the source images, these game pieces will also need
to be DisplayObjects. Since there is no common interface for
DisplayObject classes to extend from, we’ll need to defi ne some
of the basic properties that a game piece will need to have. These
include x and y position, as well as width and height. For conve-
nience, since the pieces will also need to dispatch events, we can
extend IEventDispatcher to keep us from having to retype all those
methods. For the game logic, every piece must have a way to be
selected, deselected, activated, deactivated, moved, and locked.
They must also have properties that defi ne the BitmapData dis-
played inside them, and their original and current positions on
the game board. We’ll look at the classes that implement these
interfaces shortly, but now that we at least know how these objects
will be defi ned, we’ll move on to the GameBoard class.

 The GameBoard Class
 This class is the engine at the heart of this entire game and

where all the major logic happens. In order to be as fl exible and
reusable as possible, it refers to objects by their interfaces rather
than by their specifi c class:

 public class GameBoard extends Sprite {

 static public var GAME_READY:String = "gameReady";
 static public var GAME_OVER:String = "gameOver";
 static public var PIECE_SWAP:String = "pieceSwap";
 static public var PIECE_LOCK:String = "pieceLock";

 protected var _pieces:Vector.<IGamePiece>;
 protected var _rows:int, _columns:int;
 protected var _imageWidth:int, _imageHeight:int;
 protected var _boardImage:ISourceImage;
 protected var _selectedPiece:IGamePiece;
 protected var _pieceClass:Class;

 public function GameBoard(boardImage:ISourceImage,
pieceClass:Class, rows:int, columns:int, imageWidth:int = 0,
imageHeight:int = 0) {
 _rows = rows;
 _columns = columns;

Chapter 14 MIXUP — A SIMPLE ENGINE 227

 _imageWidth = imageWidth;
 _imageHeight = imageHeight;
 _boardImage = boardImage;
 _pieceClass = pieceClass;
 }

 When a new GameBoard object is created, it looks for an image
object to slice, the number of rows and columns to use, the width
and height of the puzzle, and which class to use for the game
piece (since it will be referred to generically as IGamePiece for the
rest of the code). In addition to these properties, the class defi nes
four different events that it will dispatch and a list object, _pieces ,
which will store a list of the game pieces in play.

 public function createBoard():void {
 _pieces = new Vector.<IGamePiece>();
 var numPieces:int = _rows * _columns;
 var imageData:Vector.<BitmapData> = _boardImage.getImages(_rows,
_columns);
 for (var i:int = 0; i < numPieces; i++) {
 var piece:IGamePiece = new _pieceClass();
 piece.index = i;
 piece.image = imageData[i];
 piece.x = piece.width * (i % _columns);
 piece.y = piece.height * Math.fl oor(i / _columns);
 _pieces.push(piece);
 addChild(piece as DisplayObject);
 }
 }

 public function shuffl eBoard():void {
 randomize(_pieces);
 for (var i:int = 0; i < _pieces.length; i++) {
 movePiece(_pieces[i], i);
 }
 }

 The createBoard function is the process by which the image
data is pulled from its source and inserted into game pieces.
For every piece of image data, a new game piece is created and
added to the Stage. The result of createBoard is a reproduction of
the original image, but in adjacent pieces rather than a single bit-
map. The shuffl eBoard method is used to mix up the images and
move them from their original places. We’ll look at the randomize
and movePiece methods it calls shortly. The two methods above
are separated to allow the game to display the original image for
a period, if needed, before rearranging the board.

 public function activate():void {
 for each (var piece:IGamePiece in _pieces) {
 piece.activate();
 piece.addEventListener(MouseEvent.CLICK, pieceClicked,
false, 0, true);
 }
 }

228 Chapter 14 MIXUP — A SIMPLE ENGINE

 public function deactivate():void {
 for each (var piece:IGamePiece in _pieces) {
 piece.deactivate();
 piece.removeEventListener(MouseEvent.CLICK, pieceClicked);
 }
 }

 public function cleanUp():void {
 _boardImage.cleanUp();
 _pieces = null;
 }

 These methods are what are used upon beginning and comple-
tion of a game. Calling activate will enable each piece and make
it clickable. The deactivate method reverses this action, and the
 cleanUp function calls the same method on the source image that
we looked at earlier in the interface.

 protected function pieceClicked(e:MouseEvent):void {
 var piece:IGamePiece = e.target as IGamePiece;
 if (!_selectedPiece) {
 _selectedPiece = piece;
 } else if (_selectedPiece = = piece) {
 _selectedPiece.deselect();
 _selectedPiece = null;
 } else {
 var index:int = _selectedPiece.currentIndex;
 dispatchEvent(new Event(PIECE_SWAP));
 piece.deselect();
 _selectedPiece.deselect();
 movePiece(_selectedPiece, piece.currentIndex);
 checkPiece(_selectedPiece);
 movePiece(piece, index);
 checkPiece(piece);
 _selectedPiece = null;
 checkWin();
 }
 }

 protected function checkPiece(piece:IGamePiece):Boolean {
 if (piece.currentIndex = = piece.index) {
 piece.removeEventListener(MouseEvent.CLICK, pieceClicked);
 piece.lock();
 dispatchEvent(new Event(PIECE_LOCK));
 return true;
 }
 return false;
 }

 protected function checkWin():void {
 var won:Boolean = true;
 for each (var piece:IGamePiece in _pieces) {
 if (piece.currentIndex ! = piece.index) won = false;
 }
 if (won) {
 deactivate();
 dispatchEvent(new Event(GAME_OVER));
 }
 }

Chapter 14 MIXUP — A SIMPLE ENGINE 229

 protected function movePiece(piece:IGamePiece, newIndex:int):void {
 piece.movePiece(piece.width * (newIndex % _columns), piece.
height * Math.fl oor(newIndex / _columns));
 piece.currentIndex = newIndex;
 }

 I have grouped these methods together because they are all
interrelated and easier to look at in the context of each other. The
 pieceClicked method is called when, you guessed it, a piece is
clicked. It looks to see if another piece has already been selected.
If not, this piece becomes the currently selected piece. If this
piece is already selected, it will be deselected. If a different piece
has already been selected, the game dispatches a PIECE_SWAP
event and proceeds to exchange the two pieces ’ positions. The
 movePiece function calls the same method on the correspond-
ing piece and updates its currentIndex property. Once moved,
the piece’s position is evaluated by the checkPiece method. If the
piece’s currentIndex matches its original index , the piece is in
place and is locked. Finally, once the two pieces have been moved
and checked, checkWin is called to determine if all the pieces are
now in their correct positions. If they are, the game deactivates
itself and dispatches the GAME_OVER event.

 protected function randomize(vector:Vector.<IGamePiece>):
Vector.<IGamePiece> {
 for (var i:int = 0; i < vector.length-1; i++) {
 var randomIndex:int = Math.round(Math.random()*(vector.
length–1–i)) + i;
 swapElements(vector, i, randomIndex);
 }
 return vector;
 }

 protected function swapElements(vector:Vector.<IGamePiece>,in
dex1:int,index2:int):void {
 var temp:IGamePiece = vector[index1];
 vector[index1]=vector[index2];
 vector[index2]=temp;
 temp=null;
 }

 These two fi nal methods of the GameBoard class are not spe-
cifi c to the game logic but are actually generic utility functions
that I wrote originally to manipulate arrays. Here, they have
been modifi ed to do the same with vectors of a specifi c type. The
 randomize method shuffl es the vector so all of the elements are in
new positions. By swapping each index with a random one after
it, we ensure that we get a unique order every time. This method
makes direct use of the swapElements function to move the
elements in the list.

 Now we’ll look at the GamePiece class that is used for the
implementation of the IGamePiece interface. Remember how
the GameBoard class only referenced pieces via the IGamePiece

230 Chapter 14 MIXUP — A SIMPLE ENGINE

 interface? Because of this the GamePiece class has the luxury
of having whatever internal mechanisms we want, as long as
it correctly implements all of the methods of the interface. As a
result, this class has a fair amount of hard-coded values, such
as the color, size, and speed of animations. To make a different
type of game piece, you could use this class as a starting point
and then modify any of the functionality inside it or start from
scratch. Ultimately, all that matters in this case is that the inter-
face methods are defi ned and that the game piece in some way
extends from DisplayObject or preferably InteractiveObject. This
is because in the GameBoard class, pieces are added to the Stage
and a non-DisplayObject descendent will throw an error.

 public class GamePiece extends Sprite implements IGamePiece {

 protected var _image:Bitmap;
 protected var _index:int;
 protected var _currentIndex:int;
 protected var _rolloverHighlight:Shape;
 protected var _clickHighlight:Shape;

 public function GamePiece() {
 }

 For this implementation, GamePiece will extend Sprite and
contains a Bitmap variable to store its image slice, two int
variables to store its current and original index, and two Shape
variables that will be used for rollover and click states.

 protected function createRolloverHighlight():void {
 _rolloverHighlight = new Shape();
 _rolloverHighlight.graphics.lineStyle(1, 0xFFFFFF, 1);
 _rolloverHighlight.graphics.beginFill(0xFFFFFF, .3);
 _rolloverHighlight.graphics.drawRect(.5, .5, _image.width–1,
_image.height–1);
 _rolloverHighlight.graphics.endFill();
 addChild(_rolloverHighlight);
 _rolloverHighlight.visible = false;
 }

 protected function createClickHighlight():void {
 _clickHighlight = new Shape();
 _clickHighlight.graphics.lineStyle(2, 0, 1);
 _clickHighlight.graphics.beginFill(0xFFFFFF, .2);
 _clickHighlight.graphics.drawRect(1, 1, _image.width–2,
_image.height–2);
 _clickHighlight.graphics.endFill();
 addChild(_clickHighlight);
 _clickHighlight.visible = false;
 }

 These two methods create the aforementioned Shape instances
that will constitute the piece’s alternative states. Both of them are

Chapter 14 MIXUP — A SIMPLE ENGINE 231

 arbitrarily defi ned and could be styled any number of ways or
even make reference to clips in the FLA library.

 public function get index():int { return _index; }

 public function set index(value:int):void {
 _index = value;
 }

 public function get currentIndex():int { return _currentIndex; }

 public function set currentIndex(value:int):void {
 _currentIndex = value;
 }

 public function get image():BitmapData { return _image.
bitmapData; }

 public function set image(value:BitmapData):void {
 if (!_image) {
 _image = new Bitmap(value);
 addChild(_image);
 createRolloverHighlight();
 createClickHighlight();
 }
 else _image.bitmapData = value;
 }

 These accessor methods are implementations from the inter-
face. The only one that requires a little extra explanation is the
set function for the image property. If the image already exists, it
is assigned directly to the Bitmap instance. If not, it creates the
Bitmap and the highlighted states.

 protected function onClick(e:MouseEvent):void {
 select();
 }

 protected function onRollOver(e:MouseEvent):void {
 _rolloverHighlight.visible = true;
 }

 protected function onRollOut(e:MouseEvent):void {
 _rolloverHighlight.visible = false;
 }

 public function select():void {
 _clickHighlight.visible = true;
 }

 public function deselect():void {
 _clickHighlight.visible = false;
 }

 public function activate():void {
 addEventListener(MouseEvent.CLICK, onClick, false, 1, true);
 addEventListener(MouseEvent.ROLL_OVER, onRollOver, false,
0, true);
 addEventListener(MouseEvent.ROLL_OUT, onRollOut, false, 0, true);
 buttonMode = true;
 }

232 Chapter 14 MIXUP — A SIMPLE ENGINE

 public function deactivate():void {
 removeEventListener(MouseEvent.CLICK, onClick);
 removeEventListener(MouseEvent.ROLL_OVER, onRollOver);
 removeEventListener(MouseEvent.ROLL_OUT, onRollOut);
 buttonMode = false;
 _rolloverHighlight.visible = false;
 deselect();
 }

 The fi rst three methods are triggered by mouse events and
toggle the rollover state and select method. The next four are
more implementations from the interface, all of which affect the
different states and mouse input.

 public function lock():void {
 deactivate();
 setTimeout(pieceLockAnimation, 500);
 }

 public function movePiece(newX:Number, newY:Number):void {
 TweenLite.to(this, .5, { x:newX, y:newY, ease:Expo.easeOut });
 }

 protected function pieceLockAnimation():void {
 var shape:Shape = new Shape();
 shape.graphics.beginFill(0 × 00CC00, .5);
 shape.graphics.drawCircle(0, 0, Math.max(width, height) / 2);
 shape.graphics.endFill();
 shape.x = width / 2;
 shape.y = height / 2;
 addChild(shape);
 TweenLite.to(shape, 1, { scaleX:2, scaleY:2, alpha:0,
onComplete:removeChild, onCompleteParams:[shape] });
 parent.setChildIndex(this, parent.numChildren-1);
 }

 override public function toString():String {
 return "GamePiece: index = " + index + " ,
currentIndex = " + currentIndex;
 }

 Finally , wrapping up the class are the methods to lock the piece
in place and also to move it. The pieceLockAnimation method is
another custom animation function that could be substituted for
just about any other treatment. In this case, when a piece is locked,
it fl ashes a green (usually the color associated with a positive move)
square over the piece and fades it out.

 Techie Note. Shapes

 Shape objects are a low-impact form of DisplayObject that are great to use
when all you need is something to draw in using the Graphics API or to
use as an overlay. Because they don’t extend InteractiveObject, you don’t
have to worry about them receiving or blocking mouse or keyboard events
that you need your container to get. Because they’re so simple they also
consume fewer resources, so if you did a puzzle with 100 � pieces you
wouldn’t be consuming nearly as much in memory or rendering power.

Chapter 14 MIXUP — A SIMPLE ENGINE 233

 The SourceImageEmbedded Class
 Now that we have all the logic for the game itself and functional

pieces, the last component to this puzzle is the image itself. We’ve
seen the ISourceImage interface that is used by the GameBoard
class to pull in a list of BitmapData objects. But, how does the
original BitmapData get pulled in and then sliced? The answer is
 “ depends. ” It depends on the source of the image. If the images are
embedded in the FLA library, as in our example, the BitmapData is
just waiting there for us to instantiate. But, for other sources, such
as external image fi les or a camera feed, it’s a little more compli-
cated. We’ll start out by seeing how to use an embedded image.
You may have noticed an image in the MixUp.fl a library that was
set to export as “ goldengate. ” This image of the Golden Gate Bridge
in San Francisco (taken by yours truly circa 2003) will be available
to us as raw BitmapData when the SWF is exported. Back in the
MixUp.as document class, we also defi ned a list of image names
(in this case, just one image) that would be used to load in the
data. Those names were then used to create instances of a class
called SourceImageEmbedded. We’ll look at that class now:

 public class SourceImageEmbedded implements ISourceImage {

 private var _imageClass:Class;
 private var _sourceBitmap:BitmapData;
 private var _pieceList:Vector.<BitmapData>;

 public function SourceImageEmbedded(linkageName:String) {
 _imageClass = getDefi nitionByName(linkageName) as Class;
 }

 When a new SourceImageEmbedded object is created, the link-
age name in the library for the image we want to use is passed
into the constructor. That name is then used to look up and
retrieve the actual class that name is associated with. If you recall,
there were three required methods of the ISourceImage interface.
We’ll now look at this class’s implementation of those functions:

 public function getImages(rows:int,
 columns:int,
 width:int = 0,
 height:int = 0):Vector.<BitmapData> {
 if (_pieceList) return _pieceList;
 _sourceBitmap = new _imageClass(width, height);
 var pieceBitmap:BitmapData;
 var pieceWidth:int = Math.fl oor(_sourceBitmap.width / columns);
 var pieceHeight:int = Math.fl oor(_sourceBitmap.height / rows);
 _pieceList = new Vector.<BitmapData>();
 for (var j:int = 0; j < rows; j++) {
 for (var i:int = 0; i < columns; i++) {
 pieceBitmap = new BitmapData(pieceWidth, pieceHeight);
 var rect:Rectangle = new Rectangle(i * pieceWidth, j *
pieceHeight, pieceWidth, pieceHeight);
 pieceBitmap.copyPixels(_sourceBitmap, rect, new Point());

234 Chapter 14 MIXUP — A SIMPLE ENGINE

 _pieceList.push(pieceBitmap);
 }
 }
 return _pieceList;
 }

 public function cleanUp():void {
 for each (var bmd:BitmapData in _pieceList) {
 bmd.dispose();
 }
 _pieceList = null;
 }

 public function destroy():void {
 cleanUp();
 _sourceBitmap.dispose();
 _imageClass = null;
 }

 The getImages method is defi nitely the heavy-lifter of this class.
If the list of BitmapData objects already exists (in other words, the
image has already been cut up), the function simply returns that
list again. This is to prevent destruction of still usable objects and
creation of unnecessary new objects, as BitmapData can be costly
to create and destroy repeatedly. For each rectangle on the grid, a
new BitmapData object is created in fi xed dimensions and has the
pixel data from the original image copied to it. The cleanUp and
destroy functions, as mentioned earlier in the section on the inter-
face, are there to properly dispose of the references to BitmapData
when the game is through with them. While not particularly crucial
with only one image, if you had a game with 10, 50, or 100 images,
you would not want to keep all of them in memory at once — just
the one you’re working with at any given moment. Now we have all
the classes we need to make the game work, but we have no mea-
sure of skill or statistics to associate with the player’s performance.
From here we switch gears to what happens when the game is over.

 The GameHistory and Results Classes
 While it sounds like a cool course you’d take at a college, the

GameHistory class simply contains a few pieces of data about
how the player did in a particular round of MixUp:

 public class GameHistory {

 public var won:Boolean;
 public var time:int;
 public var formattedTime:String;
 public var movesMade:int;

 public function GameHistory(won:Boolean, time:int,
movesMade:int) {
 this.won = won;

Chapter 14 MIXUP — A SIMPLE ENGINE 235

 this.time = time;
 this.movesMade = movesMade;
 }
 }

 That ’s it. As you can see, there’s not much to this class. This is
just the most basic set of data. You could feasibly store all sorts
of information about how the player performed, but for this
example we’re limiting it to whether or not they won (as opposed
to quitting prematurely), how much time it took them, and the
number of moves they made. This information is stored in the
MixUp gameHistory array and used by the Results class:

 public class Results extends MovieClip {

 static public const PLAY_AGAIN:String = "playAgain";
 static public const MAIN_MENU:String = "mainMenu";

 public var movesMadeText:TextField;
 public var fi nalTimeText:TextField;
 public var playAgainButton:SimpleButton;
 public var mainMenuButton:SimpleButton;

 public function Results() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 }

 private function addedToStage(e:Event):void {
 var history:GameHistory = MixUp.gameHistory[0];
 movesMadeText.text = String(history.movesMade);
 fi nalTimeText.text = history.formattedTime;
 playAgainButton.addEventListener(MouseEvent.CLICK,
playAgain, false, 0, true);
 mainMenuButton.addEventListener(MouseEvent.CLICK,
mainMenu, false, 0, true);
 }

 private function playAgain(e:MouseEvent):void {
 dispatchEvent(new Event(PLAY_AGAIN));
 }

 private function mainMenu(e:MouseEvent):void {
 dispatchEvent(new Event(MAIN_MENU));
 }
 }

 Like the Title class, this screen is pretty minimal in its current
form, but it could support many other pieces of information or
options. Because GameHistory objects are added to the begin-
ning of the array in the MixUp class, to get the latest object the
Results class simply looks at the fi rst element.

 At this point, we at last have a game that can be played start to
fi nish and has multiple screens. If you publish the SWF and test it
you will see how the game works, as in Figure 14.1.

236 Chapter 14 MIXUP — A SIMPLE ENGINE

 Before we end this chapter, however, we have one more class
to look at. It is an alternative class to use for the ISourceImage
implementation. It is called SourceImageCamera, and it will
use a live feed for the grid instead. If you don’t have any kind of
webcam, you can either skip to the next chapter or you can read
on for enlightenment.

 The SourceImageCamera Class
 Our previous implementation, the SourceImageEmbedded

class, was simply a generic object. It only ran code when it was
requested and was silent the rest of the time. For this next exam-
ple, we’ll need to be able to continually update the BitmapData
in the pieces after they’re cut up in order for a camera feed to be
worthwhile:

 public class SourceImageCamera extends Sprite implements
ISourceImage {

 protected var _rows:int, _columns:int;
 protected var _video:Video;
 protected var _camera:Camera;
 protected var _sourceBitmap:BitmapData;
 protected var _pieceList:Vector.<BitmapData>;

 public function SourceImageCamera(width:int, height:int,
fps:int = 15) {
 _camera = Camera.getCamera();
 _video = new Video (width, height);

 Figure 14.1 The MixUp game, in action.

Chapter 14 MIXUP — A SIMPLE ENGINE 237

 _camera.setMode(width, height, fps);
 _video.attachCamera(_camera);
 }

 You ’ll notice a number of similarities between this class and the
one for embedded images. In this version, we create variables to
store the number of rows and columns for later use, as well as refer-
ences to use with the Video and Camera classes. For more informa-
tion on using the Camera class, go to Appendix A at the end of this
book. When this class is constructed, new Camera and Video objects
are created to match the desired dimensions and frame rate.

 public function getImages(rows:int, columns:int, width:
int = 0, height:int = 0):Vector.<BitmapData> {
 if (_pieceList) return _pieceList;
 if (width = = 0) width = _video.width;
 if (height = = 0) height = _video.height;
 _rows = rows;
 _columns = columns;
 _sourceBitmap = new BitmapData(width, height);
 _sourceBitmap.draw(_video, new Matrix());
 var pieceBitmap:BitmapData;
 var pieceWidth:int = Math.fl oor(_sourceBitmap.width / _columns);
 var pieceHeight:int = Math.fl oor(_sourceBitmap.height / _rows);
 _pieceList = new Vector.<BitmapData>();
 for (var j:int = 0; j < _rows; j++) {
 for (var i:int = 0; i < _columns; i++) {
 pieceBitmap = new BitmapData(pieceWidth, pieceHeight);
 var rect:Rectangle = new Rectangle(i * pieceWidth, j *
pieceHeight, pieceWidth, pieceHeight);
 pieceBitmap.copyPixels(_sourceBitmap, rect, new
Point());
 _pieceList.push(pieceBitmap);
 }
 }
 addEventListener(Event.ENTER_FRAME, updateImages, false, 0,
true);
 return _pieceList;
 }

 Once again, you probably notice a number of similarities to
the image version of this class, except for two main differences.
The fi rst is that, instead of simply instantiating a new BitmapData
object from a class, we have to create an empty one and draw the
video into it. The second is that when the list is done being cre-
ated an ENTER_FRAME listener is added to call a method called
 updateImages , which we’ll look at next:

 protected function updateImages(e:Event):void {
 _sourceBitmap.dispose();
 _sourceBitmap = new BitmapData(_video.width, _video.
height);
 _sourceBitmap.draw(_video);
 var pieceBitmap:BitmapData;
 var pieceWidth:int = Math.fl oor(_sourceBitmap.width /
_columns);
 var pieceHeight:int = Math.fl oor(_sourceBitmap.height /
_rows);

238 Chapter 14 MIXUP — A SIMPLE ENGINE

 for (var j:int = 0; j < _rows; j++) {
 for (var i:int = 0; i < _columns; i++) {
 pieceBitmap = _pieceList[i + (j * _columns)];
 var rect:Rectangle = new Rectangle(i * pieceWidth, j *
pieceHeight, pieceWidth, pieceHeight);
 pieceBitmap.copyPixels(_sourceBitmap, rect, new
Point());
 }
 }
 }

 Most of this function mirrors the same process we did in getI-
mages , except that we now dispose of the original source image
and draw a new one on every frame loop (to keep up with the
changing camera image). Also, instead of creating a new list of
BitmapData objects, we simply update the images we’ve already
created. Because these objects are associated with the bitmaps
inside of the game pieces, those bitmaps will automatically be
updated when the pixel data inside their BitmapData changes.

 public function cleanUp():void {
 for each (var bmd:BitmapData in _pieceList) {
 bmd.dispose();
 }
 removeEventListener(Event.ENTER_FRAME, updateImages);
 _pieceList = null;
 }
 public function destroy():void {
 cleanUp();
 _sourceBitmap.dispose();
 _video = null;
 _camera = null;
 }

 Finally , only minor changes are needed to the cleanUp and
 destroy methods. The frame loop must be removed and the video
and camera objects nulled. Back in the MixUp class, you only
need to change one line to change the game from using a static
image to using this new source. On the game.init line in the set-
upGame method, change the line to look like this:

 game .init(new SourceImageCamera(640, 480, 24), 3, 4);

 The game will now use a live feed in all the rectangles, which
makes the game even more interesting if there is much motion
in the background behind you. You can apply these same tech-
niques to create new SourceImage classes that pull in imagery.

 Review
 In this chapter, we took a simple game from basic concept and

rule set to completion using interfaces to keep it modular. In the
next chapter, we will apply these concepts further on a much
larger, more complicated game.

239
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 BRINGING IT ALL TOGETHER:
A PLATFORMER

 In the process of deciding what game I should walk through
the creation of in this chapter, I asked a lot of my developer
friends what they would fi nd most useful. I even posted a pub-
lic survey for people to cast votes on a variety of game types. I
was impressed that, by a huge margin (the runner-up had about
half as many votes), the winner was a platformer-style game.
When I asked other devs why they thought this was the case,
the answer was simple, albeit daunting: The platformer is an
example of many different game design and development prin-
ciples all working together at once — level design, animation, key-
board input, physics, collision detection, and basic AI. So, in the
name of democracy, that’s the type of game we will create in this
chapter.

 The Platformer Genre
 If you’ve played very many games in your life, particularly on

a console, odds are you’ve probably played a platformer game at
one point. In fact, if you’ve played almost any of Nintendo’s pop-
ular line of Mario games, you’ve played a platformer. While that
famous Italian plumber tends to be the iconic representation of
platformer games, this subgenre of action/adventure games is
actually much broader than squashing enemies from above and
collecting oversized mushrooms. Some might take place in a
single screen while others scroll horizontally or vertically. Some
might focus on solving a puzzle by moving objects around, col-
lecting keys, or manipulating the game environment to allow the
player to escape.

 15

240 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 Despite all of the variations and possible styles of platformer
games, they all tend to follow a few core tenets:

 ● The user controls some kind of protagonist, generally just
referred to as a player.

 ● The player can move left and right and can almost always
jump or use ladders.

 ● Some basic rules of physics usually apply, like gravity and
basic collisions with solid objects; some games employ
other forces like wind, buoyancy, or rubbery surfaces that
cause the player to bounce.

 ● Gameplay is level based; each level has a start and an end-
point or ends based on accomplishing a particular objec-
tive (collecting certain items, destroying all enemies, etc.).

 ● There is a backstory, however brief, explaining what the
player is doing and why.

 Next , we’ll defi ne the rule set for our game based on these fun-
damental ideas.

 Data Flow
 It ’s important to outline the responsibilities of the different

components of the game before going any further. In Figure 15.1,
I’ve outlined what each component of our game is responsible for
controlling. When I talk about the “ engine, ” I’m referring to the set
of classes that make up the core mechanics of a platformer game.

 Figure 15.1 The application and the engine have different responsibilities that work in tandem with
each other.

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 241

 This engine is game-agnostic — it is the code that is meant to be
reused later. When I talk about the game- or application-level
code, I’m referring to the current implementation of the engine.
Let’s say I wanted to build two different platformer games with
different art sets and basic behaviors (modifi ed physics, for exam-
ple). The engine code should remain unchanged from one game
to the next (other than to add or fi x features that affect all games),
while the game code and art are unique to each implementation.

 We applied a similar process with MixUp in Chapter 14, just
not as explicitly outlined; the GameBoard class and the accom-
panying interfaces were the engine and the other classes were the
implementation. It is important to delineate each component’s
jurisdiction ahead of time; it is easier than separating code into
different classes later. When we look at the code for this game
later on in the chapter, it will be split into these two categories.

 The Game Flow and Features
 Because a platformer is more complicated than the simple

puzzler in the last chapter, it requires even better defi nition of
scope and mechanics. This rule applies to game development
across the board — an increase in complexity necessitates an
increase in documentation. There are so many possible feature
sets that can be included in a platformer it is important to narrow
them down to just what we will implement in this version of the
engine; otherwise, this chapter would engulf an entire book, and
it would take you weeks to build it. It is important to remember
that most well-written applications start out with a basic feature
set and are modular enough to add feature sets over time. Take
any given professional level app, even Flash itself; we are now
on version 10, and it still does not have all the features we might
want it to. Instead, Adobe has chosen to focus on certain feature
sets and fi ne tune them so they work reliably and consistently.
We must remember to give ourselves this same breathing room.
No one developer is going to create the next World of Warcraft
by him- or herself; it takes hundreds of people and thousands of
hours of work.

 The Setting
 For the purposes of this book and learning the mechanics of a

platformer, we don’t really need a backstory. Suffi ce it to say that
for this game the player will be exploring dungeon-like mazes,
avoiding enemies, and collecting treasure for points. Although
this may sound simple and familiar, it is intentional. Ultimately,
we want to create a generic engine that can be reused for any
number of implementations and environments.

242 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 The Level Design and Walls
 The levels for this platformer will be based around a grid

design of squares. This helps simplify level creation and enforces
a standard for asset artwork. Any given grid square can be solid
or empty, either blocking the player or allowing the player to
pass through it. Going forward we will refer to solid grid squares
as walls . We will examine how a sample level layout will look on
paper momentarily. If there are no walls along the bottom of the
level, it will be possible for the player to fall off the map. This
would cause the level to end and the player to lose a life.

 Portals
 Every level will have an exit point that will signify completion

of the level when the player passes through it. We’ll call this exit
a portal , as it transports the player somewhere else. You may
be wondering why we’re not simply calling it an exit. While this
implementation of the game and engine may only ever have
one exit, future iterations might span a level over a series of
screens, and these portals would actually be a means of moving
between them.

 The Player Character
 In this game, the arrow keys will control the player. The left and

right arrow keys will move him in those directions, respectively.
The up arrow will make the player jump, and the down arrow
will be used to enter portals. The player’s jump height is equal to
1.5 times the height of a grid square. This allows for the player to
clear gaps one grid space in width and to easily jump onto grid
squares one unit above. Additionally, the player has the ability to
carry items in an inventory. In our iteration, these items will pri-
marily consist of treasure and keys for unlocking doors but could
include other pickups, such as health, in the future.

 Items
 Both keys for unlocking portals and treasure are classifi ed as

 items . They share a similar relationship in that they both disap-
pear and are added to the player’s inventory when the player
moves over them. The game will defi ne certain special types of
items (such as keys), which will be used by the game engine in
a particular way. Items not predefi ned by the engine will simply
accumulate in the inventory, and it will be up to the particular
implementation of the game as to how to handle them when they
are picked up.

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 243

 Enemies
 An enemy in this game will be defi ned as any entity that is toxic

to the player. Coming into contact with an enemy will damage the
player, by either taking a life or eating away at the player’s health.
By using this more general defi nition, an enemy could be a sharp
inanimate object or a moving creature with basic AI. As such,
enemies can either process physics such as gravity or choose to
ignore them (imagine stalactites in a cave).

 In Figure 15.2, you’ll see a level design for the platformer
based around a 10 � 10 grid. As the key in the fi gure shows, black
squares represent walls and white squares are movable areas for
the player. The dollar signs are treasure that can be picked up

$

$

= Key $ = Treasure = Wall

= Portal

$

= Enemy = Player Start

Sample Platformer Level Layout

 Figure 15.2 Because of the grid design of the levels, it is easy to map out a potential
level design on " paper " fi rst.

244 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 for points, and the key icon represents the key required to exit
through the portal at the top of the level. There is also one enemy
along the bottom of the level that will move back and forth. The
player must jump over the enemy to avoid it. The player will
start the level at the top, in the one notch cut out of the border
wall surrounding the level. All of the levels for the game can (and
probably should) be mapped out this way. This type of system is
also very handy because it can translate into a standardized for-
mat like XML (which we will look at momentarily), and it is rela-
tively straightforward to create an editor app for building levels.

 The Level File Format and Asset Structure
 It is a good idea to keep all of the data for each level in external

fi les. This allows you to load new levels at runtime, as well as cre-
ate your own in a standardized format, either by hand or (pref-
erably) using a custom editor. Much like in Chapter 9, we’ll store
this level data in XML. This keeps the data modular and fl exible,
making it easy to add or remove elements from a level. It also
enforces a level of organization on the data, keeping it readable if
you needed to make edits by hand.

 In addition to the level data living outside the fi nal game SWF,
it’s a good idea with a game like this to externalize as many assets
as possible. As such, we’ll look at maintaining separate SWF fi les
for the different art assets used in the game. Each level XML fi le
will include the asset SWFs it uses, and the engine will handle
loading those fi les prior to assembling the level. Keeping these
assets in separate SWFs also allows for other developers or art-
ists to work on different aspects of the game without stepping
on each other’s toes. When we get to the code behind the engine,
we’ll defi ne the rules that asset fi les must follow in order to work
properly with the engine.

 The Level XML
 Here is what Figure 15.2 looks like represented as XML. Note

that to make the wall nodes more readable I have inserted car-
riage returns between each column. In the fi nal format, there is
no reason to have these and it is a non-standard XML practice.

 < level width = " 10 " height = "10" gridSquareSize = "50">
 < assets >
 < asset fi le = "player.swf"/ >
 < asset fi le = "enemies.swf"/ >
 < asset fi le = "items.swf"/ >
 < asset fi le = "environment.swf"/ >
 < /assets >
 < player spriteClass = "Player" x = "2" y = "0" / >

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 245

 < enemies >
 < enemy spriteClass = "Enemy1" name = "enemy1" x = "5" y = "8" / >
 < /enemies >
 < items >
 < item spriteClass = " Key " type = " key " name = " key1 "
x = " 1 " y = " 5 " points = " 0 " / >
 < item spriteClass = " Treasure " type = " treasure "
name = " treasure1 " x = " 2 " y = " 3 " points = " 100 " / >
 < item spriteClass = " Treasure" type = " treasure "
name = " treasure2 " x = " 1 " y = " 8 " points = " 100 " / >
 < item spriteClass = " Treasure " type = " treasure "
name = " treasure3 " x = " 6 " y = " 6 " points = " 100 " / >
 < /items >
 < portals >
 < portal spriteClass = " LevelEndDoor"
destination = " nextLevel " x = " 5" y = " 1 " >
 < requirement type = " inventory " name = " key1 " / >
 < /portal >
 < /portals >
 < walls >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 0 " / >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 1 " / >
 < wall spriteClass = " StandardWall " x = " 0" y = " 2 " / >
 < wall spriteClass = " StandardWall " x = " 0" y = " 3 " / >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 4 " / >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 5 " / >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 6 " / >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 7 " / >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 8 " / >
 < wall spriteClass = " StandardWall " x = " 0 " y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 1 " y = " 0 " / >
 < wall spriteClass = " StandardWall " x = " 1 " y = " 4 " / >
 < wall spriteClass = " StandardWall " x = " 1 " y = " 6 " / >
 < wall spriteClass = " StandardWall " x = " 1" y = " 7 " / >
 < wall spriteClass = " StandardWall " x = " 1" y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 2 " y = " 2 " / >
 < wall spriteClass = " StandardWall " x = " 2" y = " 4 " / >
 < wall spriteClass = " StandardWall " x = " 2 " y = " 7 " / >
 < wall spriteClass = " StandardWall " x = " 2 " y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 3" y = " 0 " / >
 < wall spriteClass = " StandardWall" x = " 3 " y = " 2 " / >
 < wall spriteClass = " StandardWall" x = " 3 " y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 4 " y = " 0 " / >
 < wall spriteClass = " StandardWall" x = " 4 " y = " 1 " / >
 < wall spriteClass = " StandardWall " x = " 4 " y = " 2 " / >
 < wall spriteClass = " StandardWall " x = " 4 " y = " 3 " / >
 < wall spriteClass = " StandardWall " x = " 4 " y = " 5 " / >
 < wall spriteClass = " StandardWall " x = " 4 " y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 5 " y = " 0 " / >
 < wall spriteClass = " StandardWall " x = " 5 " y = " 2 " / >
 < wall spriteClass = " StandardWall" x = " 5 " y = " 3 " / >
 < wall spriteClass = " StandardWall " x = " 5 " y = " 6 " / >
 < wall spriteClass = " StandardWall" x = " 5 " y = " 9 " / >

246 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 < wall spriteClass = " StandardWall" x = " 6 " y = " 0 " / >
 < wall spriteClass = " StandardWall" x = " 6 " y = " 3 " / >
 < wall spriteClass = " StandardWall " x = " 6 " y = " 7 " / >
 < wall spriteClass = " StandardWall " x = " 6 " y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 7 " y = " 0 " / >
 < wall spriteClass = " StandardWall " x = " 7 " y = " 5 " / >
 < wall spriteClass = " StandardWall " x = " 7 " y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 8 " y = " 0 " / >
 < wall spriteClass = " StandardWall " x = " 8 " y = " 4 " / >
 < wall spriteClass = " StandardWall " x = " 8 " y = " 5 " / >
 < wall spriteClass = " StandardWall " x = " 8 " y = " 8 " / >
 < wall spriteClass = " StandardWall " x = " 8 " y = " 9 " / >

 < wall spriteClass = " StandardWall " x = " 9 " y = " 0 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 1 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 2 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 3 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 4 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 5 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 6 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 7 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 8 " / >
 < wall spriteClass = " StandardWall " x = " 9 " y = " 9 " / >
 < /walls >
 < /level >

 In the opening tag of the XML, the width and height of the level,
and the pixel size of each grid square are set. In this case, the level
is 10 � 10, with a square size of 50 pixels. This gameboard will ulti-
mately be 500 � 500 pixels. In the fi rst set of nodes, I defi ne which
asset SWFs the level will use. The engine will load these fi les before
parsing the rest of the level. Whenever a node makes reference to
a class, it will be defi ned and contained within one of the asset
SWFs. I will outline the creation of these asset SWFs shortly.

 The next individual node defi nes the player class and start
position. Note that this x and y will not translate directly to an
 x and y on the Stage, but rather the corresponding grid refer-
ence in the level. To match the arrays that will eventually exist
to house the grid, the x and y coordinates are 0 based. Thus, the
player’s start position of (2,0) will actually be in the third column
at the top. The next two sets of nodes follow the same pattern,
just with enemies and items. Items have a couple of extra attri-
butes, including the type (so the engine knows how to use the
item), a unique name (so the item can be tied to functionality in
the game), and a point value. Note that the key is not worth any
points but will be a requirement to exit the level.

 Next in the fi le are any portal nodes. This level has only one,
and its destination attribute designates that it will go to the next
level. Portals also have optional requirement nodes; these are
things that must be done for the portal to be active. In this case,
the item tagged with the name “ key1 ” is required to have been

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 247

 picked up in order for the portal to be used. With this structure,
you could theoretically have multiple requirements, such as
destroying all enemies on a level or gathering all the treasure.

 Finally , the fi le ends with the wall defi nitions. Each of these
nodes defi nes a grid square that holds a wall. The player will
not be able to move into these squares. Every one of these wall
squares will look the same, but you could in fact defi ne a different
asset class for each of them. This would allow you to create grid
squares that seam together to form larger images.

 Asset SWFs
 To keep the game as modular as possible and load times low,

the various art assets for the game will be stored in external SWFs
and loaded in at runtime. This will provide a few benefi ts:

 ● Assets will only be loaded when needed, meaning the main
game SWF will not be weighted down with a ton of art in
its initial load should an implementation of this game have
many levels.

 ● Multiple developers and artists are capable of working on
specifi c assets in tandem without needing access to the
core FLA fi le.

 ● Adding new character and scenery art will be as simple as
dropping in new SWFs and referencing them in the level XML.

 This structure is similar to how many commercial games work;
the EXE or main application fi le is the engine and is accompanied
by one or more resource fi les (PAK, WAD, and RSC are some com-
mon extensions).

 The asset fi les will have no active timeline. Each will consist
merely of library items with class linkages. Once the assets are
loaded into the game, they will be stored in memory and then
accessed by instantiating new copies of the assets. When a level
is complete, the assets will be purged from memory, but if they
need to be loaded again they should already be cached in the
user’s browser, preventing a repeat download.

 The Game Outline
 Before we dig into the code behind this game, I’ll outline all the

classes that will come into play. The classes are divided into three
categories, each with a specifi c purpose:

 ● Engine code — These fi les are at the heart of the game
mechanic and are where the core feature set of the engine
is implemented; in addition to classes, this code also con-
tains interfaces for creating the different game compo-
nents. These fi les are all within the com.fl ashgamebook
.engines.platformer package.

248 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 ● Game code — These classes control how this specifi c instance
of the engine looks and behaves and other logic like switch-
ing between levels and creation of all the engine instances.

 ● Asset classes — For each of the asset SWFs in use, we’ll specify
unique class names for each individual asset, but we won’t
actually create AS fi les for any of them (more on this shortly).

 We ’ll now look at all the classes involved, in the aforemen-
tioned order. It’s important to note that unlike the MixUp game
in Chapter 14, this example does not include multiple screens
with navigation; we will focus on the game only. There is already
enough code at work here and I did not want to bog you down
with information not directly pertinent to the tasks at hand. I’m
nice like that.

 The Engine Classes
 In this section, I will outline each of the classes involved in the

core engine of this platformer and walk through the code of each.
This is where the bulk of the code for this game resides, and it’s
important to understand all the components at play:

 ● PlatformerEngine.as — This is the big one. All of the core
functionality of the game is run here; all the other classes
in the package act as support for the engine.

 ● CollisionGrid.as — To effi ciently store information about
the game grid, we will use this custom data structure,
which relies on multidimensional arrays and vectors to
keep track of everything going on in the game.

 ● GridReference.as — Each grid square has an accompany-
ing GridReference object that stores which enemies, items,
walls, and portals are in a given slot on the grid.

 ● PlatformerConfi g.as — This is a data class that allows for easy
confi guration of different aspects of the engine and makes it
easier to change the behavior of the engine properties from
level to level by storing preconfi gured instances of this class.

 ● PortalRequirement.as — Each portal instance has an array
of these objects, which defi ne what requirements must be
met in order to fi nish a level.

 ● PortalDestination.as — An enumeration class, this fi le sim-
ply contains preapproved destinations for portals (which
map to those mentioned earlier in the XML) and makes it
easy to add new ones.

 ● PlatformerEvent.as — Tucked inside the events subpack-
age, this class extends a normal DataEvent that the
PlatformerEngine can dispatch when certain things happen
inside the game; it also stores enumerations for all of the
different game events.

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 249

 ● ISprite.as, IPlayer.as, IEnemy.as, IItem.as, IPortal.as, IWall
.as — This set of interfaces in the sprites subpackage defi nes
the necessary methods required for Sprites that wish to act
as the player, enemies, etc., in the game.

 We ’ll work through these classes in reverse order, so the main
engine class will make more sense in context.

 The ISprite Interface
 This interface is the foundation for all of the other types of

Sprites, except walls. It extends IEventDispatcher so that if at
some point we need the Sprites to be able to easily dispatch
events there will be no interface confl icts:

 package com.fl ashgamebook.engines.platformer.sprites {

 import fl ash.display.Sprite;
 import fl ash.display.DisplayObject;
 import fl ash.events.IEventDispatcher;
 import fl ash.geom.Rectangle;

 public interface ISprite extends IEventDispatcher {

 function get x():Number;
 function set x(value:Number):void;
 function get y():Number;
 function set y(value:Number):void;
 function get width():Number;
 function set width(value:Number):void;
 function get height():Number;
 function set height(value:Number):void;
 function get rotation():Number;
 function set rotation(value:Number):void;
 function get hitArea():Sprite;
 function getRect(coordinateSpace:DisplayObject):Rectangle;
 function get name():String;
 function set name(value:String):void;
 }
 }

 You probably noted that all of these methods and accessors are
included in DisplayObjects, specifi cally Sprites. Implementing
this interface on a Sprite-based class will require no extra func-
tionality but makes it more fl exible in the engine by referring to
this interface rather than any particular DisplayObject type.

 The IPlayer Interface
 Wherever the engine refers to the character the user controls in

the game, it is done through the IPlayer interface, which extends
ISprite:

 package com.fl ashgamebook.engines.platformer.sprites {

 import fl ash.geom.Vector3D;

250 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 public interface IPlayer extends ISprite {

 function get netForce():Vector3D;
 function set netForce(value:Vector3D):void;
 function get isJumping():Boolean;
 function set isJumping(value:Boolean):void;
 function get isFalling():Boolean;
 function set isFalling(value:Boolean):void;
 function update():void;
 function get tempX():Number;
 function set tempX(value:Number):void;
 function get tempY():Number;
 function set tempY(value:Number):void;
 }
 }

 Note the use of Vector3D objects, much like in the examples of
Chapter 10.

 The IEnemy Interface
 Similar to the IPlayer interface, IEnemy also extends ISprite. In

fact, it repeats a couple of the accessors from IPlayer, but it didn’t
make sense to make them part of ISprite just so they would be
inherited:

 package com.fl ashgamebook.engines.platformer.sprites {

 import fl ash.geom.Vector3D;
 import com.fl ashgamebook.engines.platformer.GridReference;

 public interface IEnemy extends ISprite {

 function update():void;
 function get tempX():Number;
 function set tempX(value:Number):void;
 function get tempY():Number;
 function set tempY(value:Number):void;
 function get receivesForces():Boolean;
 function get motion():Vector3D;
 function get gridReference():GridReference;
 function set gridReference(value:GridReference):void;
 }
 }

 One unique aspect of this interface is that enemies must keep
track of where they currently are on the collision grid, since they
are the only type of entity besides the player that can move. As
such, implementers of this interface have an accessor for a
GridReference object, which we’ll look at soon.

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 251

 The IItem Interface
 Though admittedly an awkward name for an interface, IItem is

used for any items the player can pick up:

 package com.fl ashgamebook.engines.platformer.sprites {

 public interface IItem extends ISprite {

 function get points():Number;
 function set points(value:Number):void;
 function get type():String;
 function set type(value:String):void;
 function pickUp():void;
 }
 }

 The IPortal Interface
 As I mentioned earlier in the chapter, portals are the devices

that players make use of to move between levels:

 package com.fl ashgamebook.engines.platformer.sprites {

 public interface IPortal extends ISprite {

 function get requirements():Array;
 function set requirements(value:Array):void;
 function get destination():String;
 function set destination(value:String):void;
 }
 }

 The IWall Interface
 The fi nal interface, and the only one that doesn’t extend from

something else, is the one used for instances of walls. While all
of these functions are defi ned in ISprite, IWall intentionally has
a smaller subset to keep it separate from that hierarchy. Collision
detection with walls is handled differently than with other
objects, so this gives us room to expand this interface without
ramifi cations for other parts of the engine:

 package com.fl ashgamebook.engines.platformer.sprites {

 import fl ash.display.DisplayObject;
 import fl ash.geom.Rectangle;

 public interface IWall {
 //DISPLAY OBJECT PROPERTIES AND METHODS
 function get x():Number;
 function set x(value:Number):void;
 function get y():Number;
 function set y(value:Number):void;
 function get width():Number;
 function set width(value:Number):void;

252 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 function get height():Number;
 function set height(value:Number):void;
 function getRect(targetCoordinateSpace:DisplayObject):
Rectangle;
 }
 }

 The PlatformerEvent Class
 All the messages dispatched by the PlatformerEngine, with the

exception of progress messages during loading, are in the form of
a PlatformerEvent object:

 package com.fl ashgamebook.engines.platformer.events {

 import fl ash.events.DataEvent;

 public class PlatformerEvent extends DataEvent {

 public static const LEVEL_LOAD_COMPLETE:
String = " levelLoadComplete " ;
 public static const ASSET_LOAD_COMPLETE:
String = " assetLoadComplete " ;
 public static const GAME_START:String = " gameStart " ;
 public static const PLAYER_DIE:String = " playerDie " ;
 public static const INVENTORY_UPDATE:
String = " inventoryUpdate " ;
 public static const ENTER_PORTAL:String = " enterPortal " ;

 public function PlatformerEvent(type:String, data:
String = null, bubbles:Boolean = false, cancelable:
Boolean = false) {
 super(type, bubbles, cancelable, data);
 }
 }
 }

 As it becomes necessary to dispatch events about additional
functionality, those event enumerations will easily be added here.

 The PortalDestinations and PortalRequirement
Classes

 Because they’re both very short, we’ll now look at the two
classes related to portal behavior:

 package com.fl ashgamebook.engines.platformer {

 public class PortalDestinations {

 public static const NEXT_LEVEL:String = " nextLevel " ;
 public static const PREV_LEVEL:String = " prevLevel " ;
 }
 }

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 253

 While these two enumerations could have potentially been
tucked away into the PlatformerEngine class, it makes more
sense for them to be singled out. This is because there may be
more functionality to add to portal behavior, such as the ability to
move between two different portals on a single map. This frame-
work allows for that extensibility.

 package com.fl ashgamebook.engines.platformer {

 public class PortalRequirement {

 public static const INVENTORY:String = " inventory " ;
 public static const ENEMY_KILLED:String = " enemyKilled " ;

 public var type:String;
 public var name:String;

 public function PortalRequirement(type:String, name:String) {
 this.type = type;
 this.name = name;
 }
 }
 }

 PortalRequirement objects are also very simple and could have
their limited functionality handled by a generic object, but it’s better
practice to statically type it and create a space for future functionality.

 The PlatformerConfi g Class
 This class exposes certain properties of the engine by allow-

ing you to preconfi gure the behavior of the engine before even
creating it. It is prepopulated with values that work well for our
purposes, but these are all easily changed later:

 package com.fl ashgamebook.engines.platformer {

 import fl ash.geom.Rectangle;
 import fl ash.geom.Vector3D;
 import fl ash.ui.Keyboard;

 public class PlatformerConfi g {

 public var gravity:Vector3D = new Vector3D(0,25);
 public var friction:Number = .75;
 public var drag:Number = .92;

 //INPUT
 public var keyJump:int = Keyboard.UP;
 public var keyUse:int = Keyboard.DOWN;
 public var keyLeft:int = Keyboard.LEFT;
 public var keyRight:int = Keyboard.RIGHT;

 //PLAYER PROPERTIES
 public var playerMovement:Vector3D = new Vector3D(30);
 public var playerJump:Vector3D = new Vector3D(0,-10);
 }
 }

254 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 Notice that this is a good way of creating and assigning input
schemes, as well as defi ning things like the effects of gravity and
friction.

 The GridReference Class
 As stated earlier, every square on the game grid has an asso-

ciated GridReference object. It stores information about which
walls, enemies, items, and portals are in a given square:

 package com.fl ashgamebook.engines.platformer {

 import com.fl ashgamebook.engines.platformer.sprites. * ;

 public class GridReference {

 public var walls:Vector. < IWall > = new Vector. < IWall > ();
 public var items:Vector. < IItem > = new Vector. < IItem > ();
 public var enemies:Vector. < IEnemy > = new Vector. < IEnemy > ();
 public var portals:Vector. < IPortal > = new Vector. < IPortal > ();

 public function hasEnemy(sprite:IEnemy):Boolean {
 return (enemies.indexOf(sprite) > − 1);
 }

 public function removeEnemy(sprite:IEnemy):void {
 if (enemies.indexOf(sprite) > − 1) {
 enemies.splice(enemies.indexOf(sprite),1);
 }
 }

 public function hasItem(sprite:IItem):Boolean {
 return (items.indexOf(sprite) > − 1);
 }

 public function removeItem(sprite:IItem):void {
 if (items.indexOf(sprite) > − 1) {
 items.splice(items.indexOf(sprite),1);
 }
 }

 public function concat(gridReference:GridReference):void {
 if (!gridReference) return;
 walls = walls.concat(gridReference.walls);
 items = items.concat(gridReference.items);
 enemies = enemies.concat(gridReference.enemies);
 portals = portals.concat(gridReference.portals);
 }

 public function toString():String {
 var str:String = " GRID REFERENCE:\n " ;
 str + = " WALLS: " + walls + " \n " ;
 str + = " ITEMS: " + items + " \n " ;
 str + = " ENEMIES: " + enemies + " \n " ;
 str + = " PORTALS: " + portals;
 return str;
 }

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 255

 public function clear():void {
 walls = null;
 items = null;
 enemies = null;
 portals = null;
 }
 }
 }

 Every type of object a grid reference can store has a vector cre-
ated just for it. Many of these vectors may stay empty, but they
consume very little memory by themselves, so it is a small price
to pay for such fl exibility. Similar to an array, GridReference
objects have a concat method, which allows you to merge one
grid reference with another. With this functionality, it is pos-
sible to combine multiple grid references into one for easy
checking.

 There are also convenient methods for removing enemies and
items from a grid reference and a custom toString method that
allows you to easily see what’s in a grid reference with a simple
trace statement. Finally, there is also a clear method that can be
called during engine cleanup.

 The CollisionGrid Class
 To store all of the GridReference objects in a cohesive struc-

ture, we need a container. We could use a simple array or vector
to keep track of all of them, but in our case it makes more sense
to create a custom data structure — enter the CollisionGrid. This
class makes use of both an array and multiple vectors to create a
multidimensional grid:

 package com.fl ashgamebook.engines.platformer {

 import fl ash.geom.Point;

 public class CollisionGrid {

 private var _width:int;
 private var _height:int;
 private var _grid:Array;

 public function CollisionGrid(width:int, height:int) {
 _width = width;
 _height = height;
 _grid = new Array(_width, true);
 for (var i:int = 0; i < _width; i++) {
 _grid[i] = new Vector. < GridReference > (_height, true);
 for (var j:int = 0; j < _height; j++) {
 _grid[i][j] = new GridReference();
 }
 }
 }

256 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 public function getGridReference(x:int, y:int):GridReference {
 if (x < 0 || y < 0) return null;
 if (x > = _width || y > = _height) return null;
 return _grid[x][y];
 }

 public function clear():void {
 for (var i:int = 0; i < _grid.length; i++) {
 for each (var gridReference:GridReference in _grid[i]) {
 gridReference.clear();
 }
 _grid[i] = null;
 }
 _grid = null;
 }
 }
 }

 When a new CollisionGrid object is created, it needs a width and
a height. It constructs all of the necessary containers and fi lls them
with empty GridReference objects. Because the structure and
dimensions of a level can’t change on the fl y, the vector containers
have a fi xed length. This improves speed and memory usage.

 Getting at a specifi c GridReference object is as simple as call-
ing the getGridReference method and passing it x and y values. If a
grid square outside the range of the grid is requested, the method
returns null. Like a GridReference object, the grid created by this
class also has a clear method that performs clean-up and disposal
of all the objects.

 The PlatformerEngine Class
 Now we’ve reached the heart of the entire game. This class is

very large (500 � lines), so I will break it up into discrete pieces.
The class is divided logically into different sets of tasks, so it’s eas-
ier to fi nd what you’re looking for. These tasks are:

 ● Level XML load handling
 ● Asset load handling
 ● Level creation
 ● Game loop functionality (what is run every frame)
 ● Helper methods
 ● Input handlers

 This largely maps to the order of events that occur when using
the engine as well, so it is straightforward to follow. This class also
uses a ton of imports, which I’ll skip here in the text (you can fi nd
them in the source fi les for this chapter). We’ll start by looking at
all the properties defi ned in the class:

 public class PlatformerEngine extends Sprite {

 protected var _gravity:Vector3D;
 protected var _friction:Number;
 protected var _confi g:PlatformerConfi g;

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 257

 protected var _currentLevel:XML;
 protected var _previousTime:int;
 protected var _deltaTime:Number;
 protected var _keyLeftPressed:Boolean;
 protected var _keyRightPressed:Boolean;
 protected var _walls:Array;
 protected var _items:Array;
 protected var _enemies:Array;
 protected var _portals:Array;
 protected var _player:IPlayer;
 protected var _collisionGrid:CollisionGrid;
 protected var _gameRunning:Boolean = false;
 protected var _inventory:Vector. < IItem > ;
 protected var _assetDomain:ApplicationDomain;
 protected var _assetPath:String = " " ;
 protected var _assetQueue:Vector. < String > = new Vector. < String > ();
 protected var _assets:Vector. < Loader > = new Vector. < Loader > ();

 public function PlatformEngine() {
 }

 The properties listed here mostly consist of containers for dif-
ferent types of objects. A couple of important things to note are
the container for the player’s inventory and the _assetDomain
property. The latter is used to store all of the class defi nitions for
the assets the engine will load. This will keep those defi nitions
from overriding any that might exist in the engine and will keep
them from being separated from each other. Note that the con-
structor does nothing — it is there merely as an acknowledgment.
Initialization is handled through the init method, which we will
look at next:

 public function init(confi g:PlatformerConfi g):void {
 _confi g = confi g;
 _gravity = _confi g.gravity;
 _friction = _confi g.friction;
 _assetDomain = new ApplicationDomain(ApplicationDomain.
currentDomain);
 _inventory = new Vector. < IItem > ();
 }

 This method handles creation of a number of basic engine
properties. It is the fi rst of a handful of public-facing methods.
The majority of the functionality of this engine is protected and
inaccessible from the outside.

 public function startGame():void {
 if (!stage) throw new Error(" PlatformEngine instance must
be added to stage before startGame() is called. ");
 stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown,
false, 0, true);
 stage.addEventListener(KeyboardEvent.KEY_UP, onKeyUp,
false, 0, true);
 addEventListener(Event.ENTER_FRAME, update, false, 0, true);
 _previousTime = getTimer();
 _gameRunning = true;
 }

258 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 public function stopGame():void {
 if (!stage) throw new Error(" PlatformEngine instance must
be added to stage before stopGame() is called. ");
 stage .removeEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);
 stage.removeEventListener(KeyboardEvent.KEY_UP, onKeyUp);
 removeEventListener(Event.ENTER_FRAME, update);
 _gameRunning = false;
 }

 Once the game is added to the Stage and has had all of its data
loaded, the startGame and stopGame methods can be called.
They handle the enterFrame and keyboard listener attachment,
and also toggle a Boolean value called _gameRunning . This will
be used later in case the game is stopped and disposed of before
all the game loop code has fi nished running.

 public function get inventory():Vector. < IItem > {
 return _inventory.slice();
 }

 A facet that the game does expose is a copy of the inventory
vector. This allows the user interface to display information about
what is in the player’s inventory. Storing everything the player
picks up allows us to tie portal requirements to specifi c items
later on.

 public function get inventoryWorth():Number {
 var worth:Number = 0;
 for each (var item:IItem in _inventory) {
 worth + = item.points;
 }
 return worth;
 }

 In addition to the list of inventory items, there’s a helpful
method for retrieving the total worth of the inventory in points. If
you recall from the level XML, every item has a point attribute; in
some cases, that value is 0, but all of them have it.

 public function destroy():void {
 clearReferences();
 for (var i:int = numChildren − 1; i > = 0; i−−) {
 removeChildAt(i);
 }
 }

 protected function clearReferences():void {
 _collisionGrid.clear();
 _inventory = null;
 _walls = null;
 _items = null;
 _enemies = null;
 _portals = null;
 _player = null;
 for each(var loader:Loader in _assets) {
 loader.unload();
 }

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 259

 _assets = null;
 _assetQueue = null;
 }

 Both of these methods are used to perform clean-up on the
engine. Because there are so many pieces of data in so many con-
tainers, it is important to null them all out. Note also that each
of the Loader objects in the asset list call the unload method on
themselves. We’ll look at level and asset loading next:

 //LEVEL MANAGEMENT
 public function loadLevel(uri:String):void {
 var request:URLRequest = new URLRequest(uri);
 var levelLoader:URLLoader = new URLLoader(request);
 levelLoader.addEventListener(Event.COMPLETE, levelLoaded,
false, 0, true);
 levelLoader.addEventListener(IOErrorEvent.IO_ERROR,
levelError, false, 0, true);
 levelLoader.addEventListener(SecurityErrorEvent.SECURITY_
ERROR, securityError, false, 0, true);
 }

 protected function levelLoaded(e:Event):void {
 _currentLevel = XML(e.target.data);
 _collisionGrid = new CollisionGrid(Number(_currentLevel.@
width), Number(_currentLevel.@height));
 var assets:XMLList = _currentLevel.assets.children();
 for (var i:int = 0; i < assets.length(); i++) {
 _assetQueue.push(assets[i].@fi le);
 }
 var pe:PlatformerEvent = new
PlatformerEvent(PlatformerEvent.LEVEL_LOAD_COMPLETE);
 dispatchEvent(pe);
 loadNextAsset();
 }

 protected function levelError(e:IOErrorEvent):void {
 trace(" PlatformEngine: Error Loading Level: " ,e.text);
 }

 protected function securityError(e:SecurityErrorEvent):void {
 trace(" SecurityError: " ,e.text);
 }
 //END LEVEL MANAGEMENT

 When the engine has been created and initialized, it is ready
to load a level XML fi le. As such, there is a public method called
 loadLevel that does just this. When the level data is loaded and
converted to an XML object, a new CollisionGrid object is cre-
ated, as well as a list of all the necessary assets needed to play the
level. Once this list is complete, asset loading begins.

 //ASSET MANAGEMENT
 protected function loadNextAsset(e:Event = null):void {
 var loader:Loader = new Loader();
 var nextAsset:String = _assetQueue[_assets.length];

260 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 var context:LoaderContext = new LoaderContext(false,
_assetDomain);
 loader.load(new URLRequest(_assetPath + nextAsset),
context);
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
assetsLoaded, false, 0, true);
 loader.contentLoaderInfo.addEventListener(ProgressEvent.
PROGRESS, assetLoadProgress, false, 0, true);
 loader.contentLoaderInfo.addEventListener(IOErrorEvent.
IO_ERROR, assetLoadError, false, 0, true);
 loader.contentLoaderInfo.addEventListener(SecurityErrorEven
t.SECURITY_ERROR, securityError, false, 0, true);
 _assets.push(loader);
 }

 The loadNextAsset method is called each time one asset fi n-
ishes loading, until the entire manifest has been pulled into the
engine. Note that the Loader has a specifi c LoaderContext object
created for it, which directs it to place the Loader’s class defi ni-
tions in a common ApplicationDomain. Each Loader also has a
progress event linked to it, which we will look at next:

 protected function assetLoadProgress(e:ProgressEvent):void {
 var baseCompletion:Number = 100 * (_assets.length-
1)/_assetQueue.length;
 var currentProgress:Number = (100/_assetQueue.length) *
(e.bytesLoaded/e.bytesTotal);
 var bytesLoaded:int = Math.
round(baseCompletion + currentProgress);
 var pe:ProgressEvent = new ProgressEvent(ProgressEvent.
PROGRESS, false, false, bytesLoaded, 100);
 dispatchEvent(pe);
 }

 To create an accurate percentage of how much of the level
assets have loaded (without knowing the fi le size of each one),
we have to create a custom ProgressEvent. It takes into account
the number of items to load and the individual progress of each
asset to create an event with somewhere between 0 and 100 bytes
loaded, which represents the percent loaded. Naturally, if the
asset fi les are dramatically different in size, this means of measur-
ing completion will seem a little erratic, but it will be as accurate
as we can get without loading all of the fi les at once (which can
choke on some Internet connections).

 protected function assetsLoaded(e:Event):void {
 if (_assets.length < _assetQueue.length) {
 loadNextAsset();
 return;
 }
 var pe:PlatformerEvent = new PlatformerEvent(PlatformerEven
t.ASSET_LOAD_COMPLETE);
 dispatchEvent(pe);
 createLevel();
 }

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 261

 protected function assetLoadError(e:IOErrorEvent):void {
 trace(" PlatformEngine: Error Loading Asset:
 " ,_assetQueue[_assets.length − 1]);
 }

 protected function getAssetClass(assetName:String):Class {
 if (_assetDomain.hasDefi nition(assetName)) {
 return _assetDomain.getDefi nition(assetName) as Class;
 }
 throw new ArgumentError(" Asset Class " + assetName + "
cannot be found in loaded asset fi les. ");
 }
 //END ASSET MANAGEMENT

 Once all of the assets are loaded successfully, the level is ready
to be created via createLevel . To link up the classes referenced in
the XML, there is one helper function called getAssetClass that
accepts a class name as a string. It looks up the class defi nition in
the common asset ApplicationDomain and returns it as a Class
object or throws an error if the asset does not exist.

 //BEGIN LEVEL CREATION
 protected function createLevel():void {
 createWalls();
 createPortals();
 createEnemies();
 createItems();
 //CREATE PLAYER
 var playerClass:Class = getAssetClass(_currentLevel.
player.@spriteClass);
 _player = new playerClass();
 _player.x = Number(_currentLevel.player.@x) *
Number(_currentLevel.@gridSquareSize);
 _player.y = Number(_currentLevel.player.@y) *
Number(_currentLevel.@gridSquareSize);
 addChild(_player as DisplayObject);
 }

 There is a lot going on in this method; it calls individual meth-
ods for creating each type of core object and then creates the
player Sprite. I’ll show all of the creation methods back to back,
as they are largely similar in structure:

 protected function createWalls():void {
 _walls = new Array();
 var walls:XMLList = _currentLevel.walls.children();
 for (var i:int = 0; i < walls.length(); i++) {
 var wallClass:Class = getAssetClass(walls[i].@
spriteClass);
 var wallSprite:IWall = new wallClass() ;
 wallSprite.x = Number(walls[i].@x) *
Number(_currentLevel.@gridSquareSize);
 wallSprite.y = Number(walls[i].@y) *
Number(_currentLevel.@gridSquareSize);
 _walls.push(wallSprite);

262 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 var gridReference:GridReference = _collisionGrid.getGridRe
ference(Number(walls[i].@x), Number(walls[i].@y));
 gridReference.walls.push(wallSprite);
 addChild(wallSprite as DisplayObject);
 }
 }

 protected function createEnemies():void {
 _enemies = new Array();
 var enemies:XMLList = _currentLevel.enemies.children();
 for (var i:int = 0; i < enemies.length(); i++) {
 var enemyClass:Class = getAssetClass(enemies[i].@
spriteClass);
 var enemySprite:IEnemy = new enemyClass();
 enemySprite.x = Number(enemies[i].@x) *
Number(_currentLevel.@gridSquareSize);
 enemySprite.y = Number(enemies[i].@y) *
Number(_currentLevel.@gridSquareSize);
 enemySprite.name = enemies[i].@name;
 _enemies.push(enemySprite);
 var gridReference:GridReference =
_collisionGrid.getGridReference(Number(enemies[i].@x),
Number(enemies[i].@y));
 gridReference.enemies.push(enemySprite);
 enemySprite.gridReference = gridReference;
 addChild(enemySprite as DisplayObject);
 }
 }

 protected function createItems():void {
 _items = new Array();
 var items:XMLList = _currentLevel.items.children();
 for (var i:int = 0; i < items.length(); i++) {
 var itemClass:Class = getAssetClass(items[i].@
spriteClass);
 var itemSprite:IItem = new itemClass();
 itemSprite.x = Number(items[i].@x) *
Number(_currentLevel.@gridSquareSize);
 itemSprite.y = Number(items[i].@y) *
Number(_currentLevel.@gridSquareSize);
 itemSprite.points = Number(items[i].@points);
 itemSprite.name = items[i].@name;
 itemSprite.type = items[i].@type;
 _items.push(itemSprite);
 var gridReference:GridReference =
 _collisionGrid.getGridReference(Number(items[i].@x),
Number(items[i].@y));
 gridReference.items.push(itemSprite);
 addChild(itemSprite as DisplayObject);
 }
 }

 protected function createPortals():void {
 _portals = new Array();
 var portals:XMLList = _currentLevel.portals.children();
 for (var i:int = 0; i < portals.length(); i++) {
 var portalClass:Class = getAssetClass(portals[i].@
spriteClass);

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 263

 var portalSprite:IPortal = new portalClass();
 portalSprite.x = Number(portals[i].@x) *
Number(_currentLevel.@gridSquareSize);
 portalSprite.y = Number(portals[i].@y) *
Number(_currentLevel.@gridSquareSize);
 portalSprite.destination = portals[i].@destination;
 for each (var requirement:XML in portals[i].requirement) {
 portalSprite.requirements.push(new
PortalRequirement(requirement.@type, requirement.@name));
 }
 _portals.push(portalSprite);
 var gridReference:GridReference =
_collisionGrid.getGridReference(Number(portals[i].@x),
Number(portals[i].@y));
 gridReference.portals.push(portalSprite);
 addChild(portalSprite as DisplayObject);
 }
 }
 //END LEVEL CREATION

 Because there is so much code to digest here, I’ve bolded the
most signifi cant areas. Each of the types of Sprites adds itself to
the appropriate GridReference object, and each enemy Sprite
stores a reference to its respective GridReference. In createPor-
tals , each portal defi nes a new PortalRequirement object for every
requirement necessary to use that portal. Every type of Sprite is
added both to an engine-level list as well as to a grid reference and
then added to the Stage at its specifi ed position from the XML.

 The level has now been created and is in the display list. From
this point forward, startGame and stopGame can be called on the
engine, and the player Sprite is ready to receive input. However,
we’re going to jump slightly out of order in the fi le for a moment
to outline the helper methods before we dive into the main game
loop. Then we’ll examine the keyboard input handlers the game
uses, as well.

 //BEGIN UTILITY
 protected function getGridPosition(sprite:ISprite):Point {
 var spriteRect:Rectangle = sprite.getRect(this);
 var centerX:Number = spriteRect.x + (spriteRect.width/2);
 var xPos:int = Math.fl oor(centerX /
Number(_currentLevel.@gridSquareSize));
 var centerY:Number = spriteRect.y + (spriteRect.height/2);
 var yPos:int = Math.fl oor(centerY /
Number(_currentLevel.@gridSquareSize));
 return new Point(xPos, yPos);
 }

 protected function updateGridReference(sprite:IEnemy):void {
 var position:Point = getGridPosition(sprite);
 var newGridReference =
_collisionGrid.getGridReference(position.x, position.y);
 if (newGridReference = = sprite.gridReference) return;
 sprite.gridReference.removeEnemy(sprite);

264 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 sprite.gridReference = newGridReference;
 newGridReference.enemies.push(sprite);
 }

 protected function getCollisionReference(sprite:ISprite):
GridReference {
 var testPoint:Point = getGridPosition(sprite);
 var testReference:GridReference = new GridReference();
 //CHECK THE CURRENT GRID REFERENCE, AND THE EIGHT
SURROUNDING
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x − 1, testPoint.y − 1));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x, testPoint.y − 1));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x + 1, testPoint.y − 1));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x — 1, testPoint.y));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x, testPoint.y));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x + 1, testPoint.y));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x − 1, testPoint.y + 1));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x, testPoint.y + 1));
 testReference.concat(_collisionGrid.getGridReference
(testPoint.x + 1, testPoint.y + 1));
 return testReference;
 }
 //END UTILITY

 To make it easy to determine the grid space for any given Sprite
in the game, there is a single method that returns a Point object.
Any given Sprite is measured from the center point of its Stage
rectangle to determine the grid space in which is resides.

 As I mentioned earlier, enemies are capable of moving
between grid squares, so they must have the ability to update the
GridReference objects to which they are linked. This is where the
 updateGridReference method comes in handy — it handles remov-
ing an enemy from one reference and into another with a single
command.

 The fi nal, and perhaps most important, helper method is
 getCollisionReference . This method assembles an entirely new
GridReference object concatenated from the eight grid squares
surrounding a Sprite, plus the square in which the Sprite currently
exists. This is important because it ensures that we only test for
collisions in nearby grid references. There is no need to test the
player against another Sprite on the other side of the level. This
ensures that there will be no more and no less than nine checks
per cycle, which means that the level size can scale almost indefi -
nitely without a performance drop. This method will be called at
the onset of every collision detection check.

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 265

 //BEGIN INPUT MANAGEMENT
 protected function onKeyDown(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case _confi g.keyLeft: _keyLeftPressed = true;
 break;
 case _confi g.keyRight: _keyRightPressed = true;
 break;
 case _confi g.keyJump: playerJump();
 break;
 case _confi g.keyUse: checkPortals();
 break;
 }
 }

 protected function onKeyUp(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case _confi g.keyLeft: _keyLeftPressed = false;
 break;
 case _confi g.keyRight: _keyRightPressed = false;
 break;
 }
 }
 //END INPUT MANAGEMENT

 The key input for this platformer is very simple. The left and
right keys (regardless of the actual key they’re assigned to in the
Confi g class) act as toggles, while the jump and use keys (Up and
Down arrows, by default) perform one-time actions.

 On every frame update, the game will call the update method.
This function determines the amount of time that has elapsed
since it was last called and then calls a number of other methods:

 //BEGIN GAME LOOP LOGIC
 protected function update(e:Event):void {
 _deltaTime = (getTimer() − _previousTime)/1000;
 _previousTime = getTimer();
 readKeyInput();
 applyForces();
 movePlayer();
 moveEnemies();
 checkPlayerCollisions();
 render();
 }

 As a top-level summary before we dig into each method indi-
vidually, here is the process that takes place in the course of an
 update :

 ● The game checks to see which keys are pressed so it can
apply player forces if necessary.

 ● Physics forces are applied to the player.
 ● The player’s cumulative forces are used to update the play-

er’s position in the form of temporary properties (tempX
and tempY).

266 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 ● All of the enemies in the game are moved according to
their motion parameter; they are also checked for colli-
sions against walls.

 ● The player is collision-checked against different kinds of
Sprites, depending on the player’s position in the grid; por-
tals are not checked until the " use " key is pressed.
 1. If the player is colliding with a wall, the player’s temp

position is updated to adjust for the wall.
 2. If the player is colliding with an enemy, a death event is

dispatched.
 3. If the player is colliding with an item, the item is added to

the inventory and an inventory update event is dispatched.
 ● The player’s and enemies ’ temporary positions are

assigned to their respective x and y values, having been
correctly adjusted for collisions.

 protected function readKeyInput():void {
 var movement:Vector3D = _confi g.playerMovement.clone();
 movement.scaleBy(_deltaTime);
 if (_keyLeftPressed) {
 _player.netForce.decrementBy(movement);
 }
 if (_keyRightPressed) {
 _player.netForce.incrementBy(movement);
 }
 }

 In readKeyInput , the player’s horizontal movement is applied
as a force (scaled by the amount of time that has passed) to the
player’s physics object.

 protected function playerJump():void {
 if (_player.isJumping || _player.isFalling) return;
 _player.isJumping = true;
 var jump:Vector3D = _confi g.playerJump.clone();
 _player.netForce.incrementBy(jump);
 }

 When the user presses the jump key, it triggers the playerJump
method. If the player is already jumping or is falling through the
air, the jump command is ignored. The jump is applied directly
one time, rather than being scaled over time; gravity will eventu-
ally overcome the force of the jump.

 protected function applyForces():void {
 var gravity:Vector3D = _confi g.gravity.clone();
 gravity.scaleBy(_deltaTime);
 _player.netForce.incrementBy(gravity);
 if (_player.isJumping) {
 _player.netForce.x * = _confi g. drag;
 } else {
 _player.netForce.x * = _confi g.friction;
 }
 }

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 267

 protected function movePlayer():void {
 _player.tempX = _player.x + _player.netForce.x;
 _player.tempY = _player.y + _player.netForce.y;
 }

 Next , the forces of gravity, drag, and friction are all applied to
the player’s force object. Then the player’s position is updated to
its tempX and tempY properties based on the current amount of
force being applied. Before checking for collisions, however, we
need to update the positions of all enemies in the game:

 protected function moveEnemies():void {
 for each (var enemy:IEnemy in _enemies) {
 var motion:Vector3D = enemy.motion.clone();
 motion.scaleBy(_deltaTime);
 enemy.tempX = enemy.x + motion.x;
 enemy.tempY = enemy.y + motion.y;
 //CHECK WALL COLLISIONS
 var testReference:GridReference = getCollisionReference(enemy);
 var enemyRect:Rectangle = enemy.hitArea.getRect(this);
 var oldRect:Rectangle = enemyRect.clone();
 enemyRect.offset(enemy.tempX-enemy.x, enemy.tempY-enemy.y);
 for each (var wall:IWall in testReference.walls) {
 var wallRect:Rectangle = wall.getRect(this);
 var intersection:Rectangle =
wallRect.intersection(enemyRect);
 if (!intersection.width || !intersection.height) continue;
 if (wallRect.right > = oldRect.left) { //WALL IS TO THE LEFT
 enemyRect.x — = intersection.width;
 enemy.motion.x *= −1;
 }
 if (wallRect.left > = oldRect.right) { //WALL IS TO THE RIGHT
 enemyRect.x − = intersection.width;
 enemy.motion.x *= −1;
 }
 }
 enemy.tempX = enemy.x + enemyRect.x-oldRect.x;
 enemy.tempY = enemy.y + enemyRect.y-oldRect.y;
 }
 }

 Each enemy can have its own motion force defi ned individu-
ally, and each one is applied separately. In the same process,
since we’re already looping through the list of enemies, we test for
wall collisions using the getCollisionReference method we looked
at earlier. If an enemy is hitting a wall, its direction is reversed.
For this example, there is no accounting for physics on enemies,
so gravity would not affect them; however, it would not be terri-
bly diffi cult to add support for forces to be applied to enemies as
well as the player.

 protected function checkPlayerCollisions():void {
 var testReference:GridReference = getCollisionReference(_player);
 //CHECK INDIVIDUAL SPRITES
 checkWalls(testReference);

268 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 checkItems(testReference);
 checkEnemies(testReference);
 }

 The checkPlayerCollisions method is actually comprised of
several methods that test against individual kinds of Sprites. The
tests for each are very similar, but the results are handled differ-
ently in each case.

 protected function checkWalls(testReference:GridReference):
void {
 var testRect:Rectangle = _player.hitArea.getRect(this);
 var oldRect:Rectangle = testRect.clone();
 testRect.x + = _player.tempX-_player.x;
 testRect.y + = _player.tempY-_player.y;
 for each (var wall:IWall in testReference.walls) {

 var wallRect:Rectangle = wall.getRect(this);

 var intersection:Rectangle =
 wallRect.intersection(testRect);
 if (!intersection.width || !intersection.height)
continue;

 if (wallRect.top > = oldRect.bottom) { //WALL IS BELOW
 testRect.y − = intersection.height; //OFFSET BY
INTERSECTION HEIGHT
 _player.netForce.y = 0;
 }

 intersection = wallRect.intersection(testRect);
 if (wallRect.right < = oldRect.left) { //WALL IS TO THE LEFT
 testRect.x + = intersection.width;
 if (intersection.width) _player.netForce.x = 0;
 }

 intersection = wallRect.intersection(testRect);
 if (wallRect.left > = oldRect.right) { //WALL IS TO THE RIGHT
 testRect.x − = intersection.width;
 if (intersection.width) _player.netForce.x = 0;
 }

 intersection = wallRect.intersection(testRect);
 if (wallRect.bottom < = oldRect.top) { //WALL IS ABOVE
 testRect.y + = intersection.height; //OFFSET BY
INTERSECTION HEIGHT
 if (intersection.height) _player.netForce.y = 0;
 }

 //ADJUST VALUES TO MATCH NEW RECT
 _player.tempX = _player.x + (testRect.x − oldRect.x);
 _player.tempY = _player.y + (testRect.y − oldRect.y);
 }
 }

 The wall collision check is the most involved, as it requires the
most calculation and action on the engine’s part. If the player is
overlapping into a wall, its position must be corrected relative to

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 269

 the wall. If no overlap occurs, the full check and adjustment step
is skipped to minimize calculations.

 protected function checkItems(testReference:GridReference):
void {
 var testRect:Rectangle = _player.hitArea.getRect(this);
 for each (var item:IItem in testReference.items) {
 var itemRect:Rectangle = item.hitArea.getRect(this);
 if (testRect.intersects(itemRect)) {
 var itemPoint:Point = getGridPosition(item);
 var gridReference:GridReference =
_collisionGrid.getGridReference(itemPoint.x, itemPoint.y);
 gridReference.removeItem(item);
 _inventory.push(item);
 _items.splice(_items.indexOf(item),1);
 removeChild(item as DisplayObject);
 var pe:PlatformerEvent = new PlatformerEvent(Platformer
Event.INVENTORY_UPDATE,item.name);
 dispatchEvent(pe);
 }
 }
 }

 The next type of Sprite to check against is items. A similar rect-
angle intersection test is performed, but no position adjustments
are needed. If the player collides with an item, it should simply be
removed from the screen and all collision lists, and it should then
be added to the player’s inventory.

 protected function checkEnemies(testReference:GridReference):
void {
 var testRect:Rectangle = _player.hitArea.getRect(this);
 for each (var enemy:IEnemy in testReference.enemies) {
 var enemyRect:Rectangle = enemy.hitArea.getRect(this);
 if (testRect.intersects(enemyRect)) {
 var enemyPoint:Point = getGridPosition(enemy);
 var gridReference:GridReference =
 _collisionGrid.getGridReference(enemyPoint.x, enemyPoint.y);
 gridReference.removeEnemy(enemy);
 _enemies.splice(_enemies.indexOf(enemy),1);
 removeChild(enemy as DisplayObject);
 var pe:PlatformerEvent = new
PlatformerEvent(PlatformerEvent.PLAYER_DIE, enemy.name);
 dispatchEvent(pe);
 }
 }
 }

 The checkEnemies method is very similar to the item check,
except that a different outcome occurs in the form of a PLAYER_
DIE event. The enemy is also removed from all lists.

 protected function checkPortals():void {
 var testPoint:Point = getGridPosition(_player);
 var testReference:GridReference =
_collisionGrid.getGridReference(testPoint.x, testPoint.y);

270 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 if (testReference.portals.length) {
 var portal:IPortal = testReference.portals[0];
 var portalRect:Rectangle = portal.hitArea.getRect(this);
 if (_player.hitArea.getRect(this).intersects(portalRect)) {
 var metRequirements:Boolean = true;
 for each (var requirement:PortalRequirement in
portal.requirements) {
 if (requirement.type = = PortalRequirement.INVENTORY) {
 if (!checkInventory(requirement.name)) {
 metRequirements = false;
 break;
 }
 }
 }
 if (metRequirements) {
 var pe:PlatformerEvent = new
PlatformerEvent(PlatformerEvent.ENTER_PORTAL, portal.destination);
 dispatchEvent(pe);
 }
 }
 }
 }

 protected function checkInventory(name:String):Boolean {
 var found:Boolean = false;
 for (var i:int = 0; i < _inventory.length; i++) {
 if (_inventory[i].name = = name) {
 found = true;
 break;
 }
 }
 return found;
 }

 When the use key is pressed, the engine runs the checkPortals
method. This not only tests to see if the player is colliding with a
portal but also checks the portal’s requirement list to make sure the
player has completed the requirements for passing through the por-
tal. The one type of requirement the engine currently accounts for is
an inventory item. The checkInventory method is called to see if an
item with the specifi ed name is in the player’s inventory. If it is, the
requirement is met and the player is allowed access to the portal.

 protected function render():void {
 if (!_gameRunning) return;
 _player.x = _player.tempX;
 _player.y = _player.tempY;
 _player.update();
 for each (var enemy:IEnemy in _enemies) {
 enemy.x = enemy.tempX;
 enemy.y = enemy.tempY;
 updateGridReference(enemy);
 enemy.update();
 }
 }
 //END GAME LOOP LOGIC

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 271

 The fi nal method of the engine class updates the player’s and
all enemies ’ x and y positions to their corrected temp values. It
also calls the update method on both of these types of objects.
This allows animation/graphic updates in those types of Sprites
to occur regularly and without having to call any specifi c code.
Now we’ve covered the entire engine package — next we’ll cover
the game and asset classes that put this engine into action.

 The Game Class
 For this example, all of the classes associated with game code

are in the " example " package, differentiating them from the engine
classes. One of these classes is tied to the PlatformerExample.fl a
fi le, found with the Chapter 15 support fi les. The other classes are
related to the assets, which we will examine shortly.

 The PlatformerExample Class
 The document class used for this example handles creation of the

engine instances, as well as notifi cation and progress messaging:

 package example {

 import fl ash.display.Sprite;
 import fl ash.events.ProgressEvent;
 import fl ash.text.TextField;

 import com.fl ashgamebook.engines.platformer. * ;
 import com.fl ashgamebook.engines.platformer.events.
PlatformerEvent;

 public class PlatformerExample extends Sprite {

 public var pointsText:TextField;
 public var loadingText:TextField;
 public var percentText:TextField;
 public var gameOverText:TextField;

 private var _platformer:PlatformerEngine;
 private var _confi g:PlatformerConfi g;
 private var _level:int = 0;
 private var _score:Number = 0;
 private var _previousScore:Number = 0;

 public function PlatformerExample() {
 nextLevel();
 }

 public function nextLevel() {
 _level++;
 loadingText.visible = true;
 percentText.text = " 0% " ;
 percentText.visible = true;
 gameOverText.visible = false;
 _platformer = new PlatformerEngine();
 _confi g = new PlatformerConfi g();
 _platformer.init(_confi g);

272 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 _platformer.loadLevel(" level"+_level+".xml");
 _platformer.addEventListener(ProgressEvent.PROGRESS,
loadProgress, false, 0, true);

 _platformer.addEventListener(PlatformerEvent.ASSET_LOAD_
COMPLETE, loadComplete, false, 0, true);
 platformer.addEventListener(PlatformerEvent.ENTER
PORTAL, levelComplete, false, 0, true);
 _platformer.addEventListener(PlatformerEvent.PLAYER_DIE,
playerDied, false, 0, true);

 platformer.addEventListener(PlatformerEvent.INVENTORY
UPDATE, inventoryUpdate, false, 0, true);
 }

 private function loadProgress(e:ProgressEvent):void {
 percentText.text = Math.round(100 *
(e.bytesLoaded/e.bytesTotal)) + " % " ;
 }

 private function loadComplete(e:PlatformerEvent):void {
 loadingText.visible = false;
 percentText.visible = false;
 addChild(_platformer);
 _platformer.startGame();
 }

 private function levelComplete(e:PlatformerEvent) {
 if (e.data = PortalDestinations.NEXT_LEVEL) {
 _platformer.stopGame();
 trace(" GAME OVER: " ,_platformer.inventoryWorth, " points ");
 _previousScore = _platformer.inventoryWorth;
 _platformer.destroy();
 removeChild(_platformer);
 nextLevel();
 }
 }

 private function playerDied(e:PlatformerEvent) {
 _platformer.stopGame();
 trace(" GAME OVER: Player killed by " ,e.data);
 _platformer.destroy();
 removeChild(_platformer);
 gameOverText.visible = true;
 }

 private function inventoryUpdate(e:PlatformerEvent) {
 _score = _previousScore + _platformer.inventoryWorth;
 pointsText.text = _score.toString();
 }
 }
 }

 The primary method behind this class is nextLevel . It creates
the objects necessary to instantiate the game engine and start the
loading process. If you test this SWF using the bandwidth profi ler
inside of Flash, you’ll see that it accurately moves from 0 to 100%
over the course of loading all the assets. The method also sets up
listeners for the major game events, like the player dying, pick-
ing up items, or going through the end portal. Overall, this class

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 273

 is pretty bare bones — this is only slightly more than the bare min-
imum code required to get an instance of the PlatformerEngine
up and running. Next, we’ll look at the different asset classes and
how each one is tied to specifi c game assets.

 The Asset Classes
 The PlatformerEngine only makes use of interfaces to manipu-

late the Sprites used in the game. To build assets for the game, we
must create classes that implement those interfaces for each type
of object. If you look in the example package, you’ll notice that
each of the classes, besides the main document fi le, map to one of
the fi ve types of interfaces in the engine: player, enemy, item, wall,
or portal. Let’s examine how each of these classes implements the
appropriate interface. Since we’re going for a minimalist imple-
mentation here, these classes are pretty simple and only include
the bare essentials to meet the requirements of the interfaces.

 The Player Class
 This class will be used to implement the IPlayer interface:

 package example {

 import com.fl ashgamebook.engines.platformer.sprites.IPlayer;
 import fl ash.display.Sprite;
 import fl ash.geom.Vector3D;

 public class Player extends Sprite implements IPlayer {

 private var _netForce:Vector3D = new Vector3D();
 private var _tempX:Number = 0;
 private var _tempY:Number = 0;

 public function get netForce():Vector3D {
 return _netForce;
 }

 public function set netForce(value:Vector3D):void {
 _netForce = value;
 }

 public function get isJumping():Boolean {
 if (_netForce.y < 0) return true;
 return false;
 }

 public function set isJumping(value:Boolean):void {

 }

 public function get isFalling():Boolean {
 if (_netForce.y > 0) return true;
 return false;
 }

 public function set isFalling(value:Boolean):void {
 }

274 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 public function get tempX():Number {
 return _tempX;
 }

 public function set tempX(value:Number):void {
 _tempX = value;
 }

 public function get tempY():Number {
 return _tempY;
 }

 public function set tempY(value:Number):void {
 _tempY = value;
 }

 public function update():void {

 }

 override public function get hitArea():Sprite {
 return this;
 }
 }
 }

 Note that the hitArea accessor can be overridden to return any
Sprite you wanted to use as the rectangle for collision testing. In
this case, we’re just using the bounding box of the Sprite itself.

 The Enemy Class
 This class implements the IEnemy interface:

 package example {
 import com.fl ashgamebook.engines.platformer.sprites.IEnemy;
 import com.fl ashgamebook.engines.platformer.GridReference;
 import fl ash.display.Sprite;
 import fl ash.geom.Vector3D;

 public class Enemy extends Sprite implements IEnemy {

 private var _motion:Vector3D = new Vector3D(− 20);
 private var _tempX:Number;
 private var _tempY:Number;
 private var _gridReference:GridReference;

 public function get tempX():Number {
 return _tempX;
 }

 public function set tempX(value:Number):void {
 _tempX = value;
 }
 public function get tempY():Number {
 return _tempY;
 }

 public function set tempY(value:Number):void {
 _tempY = value;
 }

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 275

 public function get motion():Vector3D {
 return _motion;
 }

 public function get receivesForces():Boolean {
 return false;
 }

 public function get gridReference():GridReference {
 return _gridReference;
 }

 public function set gridReference(value:GridReference):void {
 _gridReference = value;
 }

 public function update():void {

 }

 override public function get hitArea():Sprite {
 return this;
 }
 }
 }

 There is one aspect of note in this implementation; the motion
vector is entirely arbitrary. Because this does not affect the engine
code, we can make the enemy’s speed any value we want.

 The Item Class
 This class implements the IItem interface:

 package example {

 import com.fl ashgamebook.engines.platformer.sprites.IItem;
 import fl ash.display.Sprite;

 public class Item extends Sprite implements IItem {

 private var _points:Number;
 private var _type:String;

 public function get points():Number {
 return _points;
 }

 public function set points(value:Number):void {
 _points = value;
 }

 public function get type():String {
 return _type;
 }

 public function set type(value:String):void {
 _type = value;
 }

 public function pickUp():void {

 }

276 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 override public function get hitArea():Sprite {
 return this;
 }
 }
 }

 In another implementation of this engine, the pickUp method
could be used to play some type of animation or play a sound.

 The Portal Class and Wall Class
 These classes implement the IPortal and IWall interfaces:

 package example {

 import com.fl ashgamebook.engines.platformer.sprites.IPortal;
 import fl ash.display.Sprite;

 public class Portal extends Sprite implements IPortal {

 private var _requirements:Array = new Array();
 private var _destination:String;

 public function get requirements():Array {
 if (!_requirements) _requirements = new Array();
 return _requirements;
 }

 public function set requirements(value:Array):void {
 requirements = value;
 }

 public function get destination():String {
 return _destination;
 }

 public function set destination(value:String):void {
 _destination = value;
 }

 override public function get hitArea():Sprite {
 return this;
 }
 }
 }

 package example {

 import com.fl ashgamebook.engines.platformer.sprites.IWall;
 import fl ash.display.Sprite;

 public class Wall extends Sprite implements IWall {

 public function Wall() {
 }
 }
 }

 Even though it does nothing, the Wall class exists to fulfi ll the
requirement of an IWall implementation. Without it, we could not
substitute this class for instances where an IWall was required.

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 277

 The Assets
 We ’ve now covered every class in play throughout this game.

Whew! Give yourself a pat on the back for having slogged through
it all. Now crack open the player.fl a fi le in the main Chapter 15
examples folder. We’ll see how these classes are implemented.

 Once you open the FLA fi le (and any of the other asset FLAs,
for that matter), you’ll notice one thing right off the bat: There
is nothing on the Stage. All of these assets are being exported
directly from the library with linkages. If you right-click on the
player Sprite in the library and select properties, you’ll see a dia-
logue like that shown in Figure 15.3.

 Figure 15.3 For each asset, the base class points to the actual code implementation, and the class fi eld points to a unique,
unpackaged name that matches the level XML.

278 Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER

 This player Sprite is nothing more than a green square, and it
uses the Player class fi le in the example package as its base class
from which it derives a new class, simply called " Player " (with
no package association). The reason for this structure is so the
level XML does not have to directly associate itself with a partic-
ular package implementation. If you open any of the other asset
fi les — environment.fl a, for example — you’ll see that each asset is
set up in a similar fashion. Figure 15.4 refl ects this.

 Figure 15.4 The level-end portal has the name LevelEndDoor but is an instance of the Portal class.

Chapter 15 BRINGING IT ALL TOGETHER: A PLATFORMER 279

 Once each of these individual SWFs is compiled, they can be
loaded into the engine and have all their class defi nitions recog-
nized. Running the main PlatformerExample SWF should look
like Figure 15.5. Doesn’t it bring back that classic NES nostalgia?

 Figure 15.5 The completed engine implementation, running level1.xml.

 Taking It Further
 A lot more is possible with this game engine, from making it

scroll to adding a second player to creating more types of ene-
mies and items. Platformers can have an obscene number of
features, and it’s important to remember that high-end platform-
ers like Little Big Planet for the PlayStation 3 or any of the recent
 Mario games by Nintendo have set the bar very high. If you build
a platformer in Flash, make sure it differentiates itself in some
way from the pack.

This page intentionally left blank

281
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 DON’T PLAY BY YOURSELF:
MULTIPLAYER DEVELOPMENT

 As the Internet continues to blossom as a tool of social inter-
action, games are just one type of application that is increasingly
demanded in a multiple-user format. Many games are simply
more fun when played with others. In this chapter we are going
to look at a very basic multiplayer game and how it works under
the hood. Robust multiplayer games are extremely time consum-
ing to produce because of the nature of real-time changing data,
so for this example we will revisit the MixUp game from Chapter
14. In that chapter, we demonstrated how the use of interfaces
allowed for a “ plug-in ” system of sorts to be used for the puzzle
image data. Once the different classes were created, it was a triv-
ial task to change the game from a static image puzzle to a con-
stantly updating camera feed. Now we will utilize that interface
once again to build a class where the puzzle image constantly
updates with your opponent’s camera.

 RTMFP
 In Flash Player 10, Adobe introduced a new protocol for

multiple-user communication called Real-Time Media Flow
Protocol (RTMFP). It is meant to complement the protocol
already used by the Flash Media Server (FMS) called Real-Time
Messaging Protocol (RTMP). RTMFP is peer based, meaning
it does not require a server and users connect directly to each
other’s machines via the Flash Player. Because of this, it is very
fast and can send considerably more information in a shorter
time than RTMP. This makes it an ideal protocol to use for mul-
tiplayer games, where response time is critical for a good game
experience.

 16

282 Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT

 Stratus
 In addition to upcoming support for RTMFP in Flash Media

Server, Adobe has created a service called Stratus (in Beta as of
this writing) that provides users with a unique 64-character ID —
 called a peer ID — that allows any two Flash 10 clients to connect
over the web. Because it is not a multiple-user server in the sense
of FMS, no communication is routed through Stratus. It simply
provides the unique identifi er and the information on how to
connect to other machines of any connected client. Once a client
has an ID, it is up to the user to spread that ID to others, either
through a back-end service or some other more direct form of
communication. We will be doing the latter, in order to focus as
much as possible on the Flash portion and not the other compo-
nents involved.

 MixUp Multiplayer
 As I stated previously, we will be modifying MixUp to become

a multiplayer-capable game. For this to work, we need to iron out
the fl ow of operations so we know what order the code has to exe-
cute in for it to work. Here’s an outline of the process of creating
a multiplayer connection through Stratus (we’ll look at the code
momentarily):

 ● Each user connects to the Stratus service with a developer
key (mine is provided with the code on the website — if you
develop your own games to use Stratus, please sign up for
your own free key).

 ● Both users receive a peerID back from the service in the
form of a 64-character alphanumeric string.

 ● Both users publish NetStream objects (more on this soon),
which will act as their outgoing channels of communica-
tion; when clients want to send data, this is the stream
they will use.

 ● One user chooses to be the host for the game and is shown
their peerID to share with others — they can simply send
this string via e-mail or instant messaging (as I did while
testing this app).

 ● The other user gets the host’s peerID and uses it to sub-
scribe to the host’s outgoing stream with a new, incoming
stream.

 ● The host receives notifi cation that a user has connected,
retrieves their peerID, and sets up an incoming stream
connected to the new guest.

 ● Both clients now have an outgoing and an incoming
stream to send and receive data — the game can begin!

Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT 283

 If this looks like a lot of steps, you’re right. Network communi-
cation is not a trivial matter, although Adobe has made it pretty
straightforward to implement. Now let’s dig into the code.

 The Classes
 This chapter assumes you’ve looked at Chapter 14 already and

are familiar with how the MixUp engine works. We will be looking
at the classes that have changed for this version of the game, as
well as the entirely new classes that must be created.

 Updated classes:
 ● MixUp.as — The document class must change to support

additional functionality required by the multiplayer
communication.

 ● Title.as — There are now options for hosting or joining a
game, rather than just simply starting a game.

 ● Results.as — The results for both players are now displayed
at the end of the game.

 New classes:
 ● ConnectionPanel.as — This class manages establishing the

connection between the two players.
 ● SourceImageWebCamera.as — The meat of this implemen-

tation, this class manages the streams between the users
and channels all communication, as well as updating the
puzzle pieces with the latest opponent camera data.

 We ’ll look at the new classes fi rst, so the updates to the older
classes make more sense.

 The SourceImageWebCamera Class
 As before, this class implements the ISourceImage interface,

which is used by the game engine. It also contains a number of
other methods and properties used by other classes. I based it
off of the original SourceImageCamera class for consistency and
because a fair amount of the logic won’t change much.

 public class SourceImageWebCamera extends Sprite implements
ISourceImage {
 protected var _rows:int, _columns:int;
 protected var _video:Video;
 protected var _camera:Camera;
 protected var _sourceBitmap:BitmapData;
 protected var _pieceList:Vector.<BitmapData>;

 protected var _netConnection:NetConnection;
 protected var _streamOutgoing:NetStream;
 protected var _streamIncoming:NetStream;
 protected var _endPoint:String = " rtmfp://stratus.adobe.com/ " ;
 protected var _devKey:
String = " 60b54df7bbb0449f247c6b8d-e1074fcae0b3 " ;

284 Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT

 protected var _gameIsOver:Boolean = false;

 public var opponentHistory:Object;

 The fi rst fi ve properties are all the same from the regular cam-
era class. After that, we will need variables to store references to
our NetConnection object (which stays connected to Stratus), the
incoming and outgoing NetStream objects, a fl ag for whether or
not the game is over, and a public-facing history object for the
opponent.

 public function SourceImageWebCamera(width:int, height:int,
fps:int = 15, endPoint:String = null, devKey:String = null) {
 _camera = Camera.getCamera();
 _video = new Video (width, height);
 _camera.setMode(width, height, fps);
 if (endPoint) _endPoint = endPoint;
 if (devKey) _devKey = devKey;
 setupConnection();
 }

 In the constructor function, we create the same Camera and
Video objects as before, as well as a BitmapData object for the
opponent. After that, we call setupConnection :

 protected function setupConnection():void {
 //SETUP CONNECTION TO STRATUS
 _netConnection = new NetConnection();
 _netConnection.connect(_endPoint + _devKey + " /");
 _netConnection.addEventListener(NetStatusEvent.NET_STATUS,
netConnectionHandler);
 }

 This method simply starts the NetConnection and makes a
connection to Stratus. It also adds a listener for a special type of
event known as a NetStatusEvent. Whenever the service sends
information back to the client, it will come in the form of this
type of event.

 protected function netConnectionHandler(e:NetStatusEvent):
void {
 if (e.info.code = = " NetConnection.Connect.Success ") {
 setupOutgoingStream();
 }
 }

 When the client receives server messages, they are in the form
of a dot-delimited string named “ code ” and are part of an info
object . In this case, the only message we’re interested in is a suc-
cessful connection notifi cation. Once we receive this, we set up
the outgoing stream object:

 protected function setupOutgoingStream():void {
 _streamOutgoing = new NetStream(_netConnection, NetStream.
DIRECT_CONNECTIONS);
 _streamOutgoing.addEventListener(NetStatusEvent.NET_STATUS,
netStreamHandler, false, 0, true);

Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT 285

 var out:Object = new Object();
 out.parent = this;
 out.onPeerConnect = function (subscriber:NetStream):Boolean {
 this.parent.setupIncomingStream(subscriber.farID);
 return true;
 }
 _streamOutgoing.client = out;
 _streamOutgoing.publish(" MixUp ");
 _streamOutgoing.attachCamera(_camera);
 }

 When you set up a NetStream object, you must supply it with
a NetConnection object and the type of connection you want to
make. In this case, since we’re using RTMFP, we want to use the
DIRECT_CONNECTIONS type. Once the stream is created and
has a status listener attached, we create an additional object
called out . The purpose of this object is to act as the recipient of
a special kind of message from the NetStream, which will tell us
when another client has subscribed to the stream. This method
is called onPeerConnect and passes the subscriber’s incoming
NetStream object. By using this stream’s farID property (simply
their peerID from Stratus), we can now set up the host’s incom-
ing stream. Now that this method is handled, we will publish this
stream under the name “ MixUp ” and attach the camera object to
it. The outgoing stream is now ready to accept connections.

 public function setupIncomingStream(id:String):void {
 if (id.length! = 64) throw new Error(" peer ID is
incorrect! ");
 if (_streamIncoming) return;
 _streamIncoming = new NetStream(_netConnection, id);
 _streamIncoming.client = this;
 _streamIncoming.addEventListener(NetStatusEvent.NET_STATUS,
netStreamHandler, false, 0, true);
 _streamIncoming.play(" MixUp ");
 _video.attachNetStream(_streamIncoming);
 }

 When one client has a peerID to connect to, the public-facing
 setupIncomingStream method is called. It receives this ID as a
parameter and throws an error if it is anything other than 64 char-
acters in length. The method also exits if the incoming stream
already exists, so as not to create it twice. We assign the client
property of the incoming stream to this main class, so that when
messages are sent through the stream they will be intercepted by
methods of the class. Finally, we activate the stream with the play
command and attach it to our video object.

 Keep in mind that at this point we’ve only established the
streams. The camera feeds will automatically send data to each
other, but other than that no data has passed between players.

 protected function netStreamHandler(e:NetStatusEvent):void {
 if (e.info.code = = " NetStream.Play.Start") {

286 Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT

 if (e.target = = _streamOutgoing) {
 _streamOutgoing.send(" |RtmpSampleAccess " , true, true);
 setTimeout(dispatchEvent, 1000, new Event(Event.CONNECT));
 }
 }
 }

 Much like the NetConnection object, we also attached a
NetStatusEvent listener to both NetStreams. When we are certain
one user has connected to the outgoing stream and begun to play
it, the class sends a message to the connected client and broad-
casts a CONNECT event to the main MixUp class. As of this writing,
there is a bug in the Flash Player that is currently being addressed
by Adobe. This is the reason for the rather odd-seeming command
that we send through the stream called “ | RtmpSampleAccess ” with
two parameters, both true. It sets the permissions of the outgoing
stream so the opponent will be able to draw his camera object into
BitmapData without causing a security error. Adobe states that
eventually this will simply be a permission that can be set as part
of the stream. In the meantime, this message takes care of that
problem for us. We include a one-second delay to make sure this
message is received by the other client before proceeding. Next
we’ll look at a few public methods that are used by classes outside
this one, as well as those used by the NetStream objects:

 public function get myID():String {
 return _netConnection.nearID;
 }

 public function get gameIsOver():Boolean {
 return _gameIsOver;
 }

 public function sendGameOver(history:GameHistory):void {
 _streamOutgoing.send(" gameOver " ,history);
 }

 public function gameOver(history:Object):void {
 _gameIsOver = true;
 opponentHistory = history;
 dispatchEvent(new Event(Event.COMPLETE));
 }

 The myID accessor function simply returns the client’s peerID
for display elsewhere. The gameIsOver performs a similar func-
tion, allowing read-only access of the game state. The send-
GameOver method is used when a player fi nishes the game,
and it sends their stats history to the other user. By specifying
 “ gameOver ” as the fi rst parameter of the NetStream.send() com-
mand, the incoming NetStream knows to call the method of the
same name. When gameOver is called, it sets the fl ag to true,
assigns the opponent’s game history object, and dispatches a
COMPLETE event to let the main class know the game is done.

Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT 287

 The getImages and updateImages methods haven’t had to
change from the SourceImageCamera class, as they reference
the same Video and BitmapData objects as before. However, the
 destroy method now has some additional functionality due to
the communication objects now being used. Both streams and
the NetConnection must be closed to fully end communication
between Stratus and any peers:
 public function destroy():void {
 _streamOutgoing.close();
 _streamIncoming.close();
 _netConnection.close();
 cleanUp();
 _sourceBitmap.dispose();
 _video.clear();
 _video = null;
 _camera = null;
 }

 The ConnectionPanel Class
 The other new class in this version of MixUp handles the visual

display of the two clients connecting to each other. You can fi nd
the assets for this class in the accompanying MixUp.fl a fi le.
 public class ConnectionPanel extends MovieClip {

 public static const HOST:String = " host " ;
 public static const JOIN:String = " join " ;

 public var submitButton:SimpleButton;
 public var cancelButton:SimpleButton;
 public var peerID:TextField;
 public var myID:TextField;
 private var _myID:String;
 public function ConnectionPanel(id:String, type:String) {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 gotoAndStop(type);
 _myID = id;
 }

 private function addedToStage(e:Event):void {
 TweenLite.from(this, .4, { y : − height });
 if (submitButton) submitButton.addEventListener
(MouseEvent.CLICK, submitButtonClick, false, 0, true);
 if (cancelButton) cancelButton.addEventListener
(MouseEvent.CLICK, cancelButtonClick, false, 0, true);
 if (myID) myID.text = _myID;
 }

 private function submitButtonClick(e:MouseEvent):void {
 submitButton.removeEventListener(MouseEvent.CLICK,
submitButtonClick);
 dispatchEvent(new DataEvent(Event.CLOSE, false, false,
peerID.text.substr(0,64)));
 close();
 }

288 Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT

 private function cancelButtonClick(e:MouseEvent):void {
 cancelButton.removeEventListener(MouseEvent.CLICK,
cancelButtonClick);
 close();
 }

 public function close():void {
 TweenLite.to(this, .4, { y : − height, onComplete:parent.
removeChild, onCompleteParams:[this] });
 }
 }

 When a ConnectionPanel object is created, it expects to receive
the client’s peerID, as well as whether it should display the host-
ing panel or the join panel. If it is the join panel, clicking the sub-
mit button will dispatch a DataEvent with the inputted peerID.
Figure 16.1 shows what the hosting panel will look like, and
Figure 16.2 shows the join panel .

 Figure 16.1 The MixUp hosting panel.

 Figure 16.2 The MixUp join panel.

 The Title Class
 Only menu options have changed for the Title class:

 public class Title extends MovieClip {

 static public const PLAY_GAME:String = " playGame" ;

Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT 289

 static public const HOST_GAME:String = " hostGame " ;
 static public const SHOW_RULES:String = " showRules " ;

 public var playButton:SimpleButton;
 public var hostButton:SimpleButton;
 public var rulesButton:SimpleButton;

 public function Title() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 }

 private function addedToStage(e:Event):void {
 playButton.addEventListener(MouseEvent.CLICK,
playButtonClick, false, 0, true);
 hostButton.addEventListener(MouseEvent.CLICK,
hostButtonClick, false, 0, true);
 rulesButton.addEventListener(MouseEvent.CLICK,
rulesButtonClick, false, 0, true);
 }

 private function playButtonClick(e:MouseEvent):void {
 dispatchEvent(new Event(PLAY_GAME));
 }

 private function hostButtonClick(e:MouseEvent):void {
 dispatchEvent(new Event(HOST_GAME));
 }

 private function rulesButtonClick(e:MouseEvent):void {
 dispatchEvent(new Event(SHOW_RULES));
 }
 }

 The Results Class
 This class now accepts both the player’s game history object

as well as the opponent’s. It also has an extra frame at the begin-
ning that acts as a waiting screen if one player fi nishes before the
other:

 public class Results extends MovieClip {

 static public const PLAY_AGAIN:String = " playAgain " ;
 static public const MAIN_MENU:String = " mainMenu " ;

 public var movesMadeText:TextField;
 public var fi nalTimeText:TextField;
 public var opponentMovesMadeText:TextField;
 public var opponentFinalTimeText:TextField;
 public var mainMenuButton:SimpleButton;

 public function Results() {
 stop();
 }

 public function setup(playerHistory:GameHistory,
opponentHistory:Object):void {
 mainMenuButton.addEventListener(MouseEvent.CLICK,
mainMenu, false, 0, true);

290 Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT

 movesMadeText.text = String(playerHistory.movesMade);
 fi nalTimeText.text = playerHistory.formattedTime;
 opponentMovesMadeText.text = String(opponentHistory.movesMade);
 opponentFinalTimeText.text = opponentHistory.formattedTime;
 }

 private function mainMenu(e:MouseEvent):void {
 dispatchEvent(new Event(MAIN_MENU));
 }
 }

 Note that the opponent’s game history object is treated as a
generic object. This is because, in the process of getting sent
through the NetStream, it lost its custom object typing. While
it does not affect functionality, it unfortunately means that you
lose compile-time error checking for any objects sent through
NetStreams, unless they are native ActionScript objects like arrays,
dictionaries, or byte arrays.

 The MixUp Class
 To wrap up our code changes, the MixUp class must alter its

behavior to accommodate the new multiplayer functionality.
Since the class is large, I will fi rst outline just those sections that
have changed, to make it easier to read.

 protected var _webCam:SourceImageWebCamera;
 protected var _hostPanel:ConnectionPanel;

 //INITIALIZATION METHODS
 public function MixUp() {
 enumerateFrameLabels();
 addEventListener(FRAME_TITLE, setupTitle, false, 0, true);
 addEventListener(FRAME_GAME, setupGame, false, 0, true);
 addEventListener(FRAME_RESULTS, setupResults, false, 0,
true);
 _webCam = new SourceImageWebCamera(640, 480);
 }

 The SourceImageWebCamera class is now instantiated imme-
diately to allow it to begin setting up the NetConnection objects.
This will ensure that the game is connected to Stratus by the time
the user can click to play.

 protected function setupTitle(e:Event):void {
 stop();
 title.addEventListener(Title.PLAY_GAME, showJoinPanel,
false, 0, true);
 title.addEventListener(Title.SHOW_RULES, showRules, false,
0, true);
 title.addEventListener(Title.HOST_GAME, showHostPanel,
false, 0, true);
 }

Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT 291

 protected function connectToGame(e:DataEvent):void {
 if (!e.data d pipe; d pipe; e.data = = " ") return;
 _webCam.addEventListener(Event.CONNECT, playGame, false, 0,
true);
 _webCam.setupIncomingStream(e.data);
 }

 protected function showJoinPanel(e:Event):void {
 var connectionPanel:ConnectionPanel = new
ConnectionPanel(_webCam.myID,ConnectionPanel.JOIN);
 connectionPanel.x = stage.stageWidth/2;
 connectionPanel.y = stage.stageHeight/2;
 addChild(connectionPanel);
 connectionPanel.addEventListener(Event.CLOSE,
connectToGame, false, 0, true);
 }

 protected function showHostPanel(e:Event):void {
 var connectionPanel:ConnectionPanel = new
ConnectionPanel(_webCam.myID,ConnectionPanel.HOST);
 connectionPanel.x = stage.stageWidth/2;
 connectionPanel.y = stage.stageHeight/2;
 addChild(connectionPanel);
 _hostPanel = connectionPanel;
 _webCam.addEventListener(Event.CONNECT, playGame, false, 0,
true);
 }

 When the Host a Game button is clicked, the showHostPanel
method is called. It creates the panel and adds a listener to the
SourceImageWebCam instance for a CONNECT event. If you
recall from earlier, this event is dispatched when the game is
ready to play. If the user opts to Join a Game, a listener is added to
the panel to listen for the DataEvent with the host’s peerID. This
ID is then passed to the setupIncomingStream method we looked
at previously.

 protected function playGame(e:Event):void {
 _webCam.removeEventListener(Event.CONNECT, playGame);
 if (_hostPanel) {
 _hostPanel.close();
 _hostPanel = null;
 }
 gotoAndStop(FRAME_GAME);
 }

 protected function setupGame(e:Event):void {
 stop();
 game.init(_webCam, 3, 4);
 setTimeout(game.startGame, 1500);
 game.addEventListener(Game.GAME_OVER, gameOver, false, 0,
true);
 }

 When the playGame method is called, the Host a Game
panel is closed (if it existed), and the game is directed to begin.

292 Chapter 16 DON’T PLAY BY YOURSELF: MULTIPLAYER DEVELOPMENT

 When the game is initialized, the SourceImageWebCamera
instance is passed to the engine.

 protected function gameOver(e:Event):void {
 var history:GameHistory = new GameHistory(true,
e.target.timeElapsed, e.target.movesMade);
 history.formattedTime = e.target.timeElapsedText.text;
 gameHistory.unshift(history);
 _webCam.sendGameOver(history);
 gotoAndStop(FRAME_RESULTS);
 }

 protected function setupResults(e:Event):void {
 if (_webCam.gameIsOver) {
 results.nextFrame();
 results.setup(gameHistory[0], _webCam.opponentHistory);
 results.addEventListener(Results.PLAY_AGAIN, playGame,
false, 0, true);
 results.addEventListener(Results.MAIN_MENU, mainMenu,
false, 0, true);
 _webCam.removeEventListener(Event.COMPLETE, setupResults);
 } else {
 trace(" I AM THE FIRST TO WIN-I MUST WAIT ");
 _webCam.addEventListener(Event.COMPLETE, setupResults,
false, 0, true);
 }
 }

 When a player fi nishes the game, the gameOver method is
called, and the game’s history object is sent to the other player. If
the player is the fi rst to arrive at the results screen, the class sim-
ply listens for a COMPLETE event from the webcam class. Once it
receives this event, the setupResults method is simply called again
and the results screen is confi gured.

 Conclusion
 That ’s it! That is what it takes to build a basic multiplayer

game using RTMFP in Flash. Obviously there is lots of room for
improvement in how fun this game could be, with features like
microphone support, the option to mess with two of your oppo-
nents ’ placed pieces as a reward for getting a series of pieces in a
row, etc. There’s also the issue of user-friendly matchmaking. The
current system of having to copy and paste a 64-character string
is pretty arcane and not really approachable outside of a develop-
ment and testing environment. Adobe offers an example project
to show how you can set up a simple web service to handle sim-
ple matchmaking and user logging. I recommend downloading
this example and exploring the protocol further.

293
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 SQUASH ‘ EM IF YOU’VE GOT
 ‘ EM: THE BUG HUNT

 As you get close to completing a project, whether on your own
or with a team, it will usually (and should always) go through
some form of quality assurance, or QA. During this process,
those testing the game should look for bugs, performance issues
(both CPU and network related), and general playability. Play-
testing a game to refi ne a mechanic and make it more fun is an
entire process unto itself, which we will not cover in this chapter.
What we will cover are ways to speed up the process of debug-
ging code and tools to help you optimize your code for better
performance.

 Bugs
 Unless you are a programming wunderkind (in which case,

why are you reading this book?), you’re going to have bugs crop
up in your work from time to time. Flash’s compiler and runtime
engine will catch a lot of errors caused by incorrect syntax, mis-
spellings, and a host of other common coding mistakes. These are
the bugs that give you immediate feedback and are usually very
simple to correct. It’s the bugs where nothing is technically wrong
with the code but your game behaves incorrectly that program-
mers never want to encounter. Examples of these types of bugs
might be degrading performance over time, memory leak/bloat
issues, or even simply unexpected output from your game engine.
To address these kinds of issues, Flash has a set of tools we can
use — and expand upon — to speed up debugging. We’ll look at a
number of these tools and how to use them in your work.

 17

294 Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT

 Traces
 The most basic form of displaying information from your code

is through the use of a trace statement. It prints any arguments
you give it to the Output window in Flash. Any objects that are
passed to the method have their toString method called to deter-
mine how to display them. This is why generic objects will trace
[object Object]. Arrays will trace their contents as a comma-
delimited string (as though the join method had been called).
When creating custom game objects, it’s not a bad idea to over-
ride the toString method and display custom returns, as well.
For example, if you have a player Sprite on the screen, a helpful
 toString return might be a list of its vital stats:

 Player <name> - Health: 90%, Ammo: 30

 Similarly , the main game engine object might list out impor-
tant information:

 Game Status – Time: 2:49, Enemies: 5, Projectiles: 2, Score: 1200

 All objects have a toString method available to them for over-
riding. Here’s how you might write such an override:

 override public function toString():String {
 var status:String = " Game Status- " ;
 status + = " Time: " + gameTime + " , " ;
 status + = " Enemies: " + enemyList.length + " , " ;
 status + = " Projetiles: " + projectileList.length + " , " ;
 status + = " Score: " + score;
 return status;
 }

 Defi ning these toString substitutions makes the information
coming back from a trace much more relevant when you’re trying to
solve a problem. However, once you get a bunch of traces on objects
going (which happens very quickly if you don’t comment out a trace
after you’re done with it), it can be a mess to try to sort through the
very limited Output window to fi nd what you’re looking for. This is
where extending the trace functionality to a new class makes sense.
Because trace is a top-level function, there’s no way to override or
extend it in the same way we might do with a class; however, we can
create a class of static methods and properties that will increase the
usefulness of traces. We’ll call the class TraceUtil:

 package {

 public class TraceUtil {

 public static const INFO:String = " info " ;
 public static const WARNING:String = " warning " ;
 public static const ERROR:String = " error " ;

 public static var throwErrors:Boolean = false;
 public static var fi lter:Array = [INFO, WARNING, ERROR];

Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT 295

 public function TraceUtil() {
 throw new Error(" TraceUtil class cannot be instantiated. ");
 }

 public static function Trace(message:String, category:
String = INFO):void {
 if (category = = ERROR & & throwErrors)
 throw new Error(message);
 if (!fi lter || !fi lter.length || fi lter.indexOf(category)
 > −1)
 trace(message);
 }

 public static function TraceObject(message:String,
object:Object, category:String = INFO):void {
 Trace(message, category);
 Trace(" " + object, category);
 for (var i:String in object) {
 Trace(" " + i + " : " + object[i], category);
 }
 }
 }
 }

 This class will allow us to attach a fi lter to our traces as we per-
form them so we can later cull out less important ones. I have pre-
defi ned three different levels of priority in this class: INFO traces
are those that are purely informational and less crucial (like a
notifi cation that a fi le has fi nished loading), WARNING traces are
for situations that the game knows how to deal with but shouldn’t
have gotten into for one reason or another, and ERROR traces
should be used to track down errors inside of try/catch blocks or
in places where you don’t want to actually throw an error but you
do want to be notifi ed of a problem. By adding these strings (or
any others you wanted to create) to the fi lter array, only messages
that correspond to these trace types will be displayed.

 The fi rst method in TraceUtil is one called Trace , capitalized
because of the name confl ict with the trace statement itself. It
simply traces out the given message, assuming that the category
matches what’s in the fi lter array. Additionally, if you’re in the
throes of debugging a serious issue, you can set the throwErrors
fl ag to true and the method will throw an actual error when a
message with that type is sent. When you’re done testing and
don’t want runtime errors thrown, you can turn this fl ag back off.

 The other method in this class is called TraceObject . It is
intended for use with dynamic objects; it relies on a for … in loop
to iterate through the given object and trace out its properties
on individual lines. In addition to normal dynamic objects, this
will also work for arrays and vectors. It will format the properties
so they are indented slightly. This simple formatting will make
scrubbing through the Output window considerably easier.

296 Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT

 FlashTracer
 Unfortunately , as useful as traces can be, they’re technically

only available inside of Flash. Luckily, a savvy programmer and
Flash user named Alessandro Crugnola created an extension for
Firefox that works in conjunction with the Flash debug player to
display traces in a handy window side-by-side with your content.
It works on both Mac and Windows and is an excellent tool for
debugging once you’ve left Flash and are in the browser. You can
fi nd a link to download FlashTracer on this book’s website, fl ashg-
amebook.com. Figure 17.1 shows a shot of FlashTracer displaying
the traces from the TraceUtil.fl a example.

 Figure 17.1 FlashTracer allows you to view all of your Flash traces inside of Firefox using
the debug player.

 The Debugger
 Sometimes traces are insuffi cient or too time consuming to

implement for solving a particular issue. Perhaps you want to
view a number of values in an object at once or watch an object
change as it is processed by a method. Traces will work here but
are a brute-force and messy solution. This is where Flash’s debug-
ger comes in very handy. If you’ve used the debugger in Flash
versions prior to CS3, you probably just rolled your eyes. This
is because the debugger in older versions of Flash was, sadly,
buggy. It would not always activate correctly, it was hard to track
down values, and it had a very poor user interface for navigating
the information when you could get it to work. For AS3, Adobe
reworked the debugger, and it is a much more useful tool now. If
you’re unfamiliar with the debugger, it allows you to step through
your code line by line as it is running to see exactly where a prob-
lem starts or an error occurs. You can defi ne the point at which
your code stops running automatically and switches to line-by-
line mode. This is known as a break point . You add it to your code

Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT 297

 in Flash by simply clicking to the left of a line number. You will
see a red dot appear next to the line. This indicates that when
the Flash Player reaches this line it will turn over control to you.
Figure 17.2 shows how this break point looks inside of Flash.

 Figure 17.2 When you click to the left of a line number in the Flash code editor, it adds a
break point that will be caught by the debugger.

 Once you’ve set a break point, you can run your SWF in debug
mode by selecting Debug → Debug Movie from the main toolbar
(Figure 17.3).

 Figure 17.3 Start a SWF in debug mode by selecting the Debug menu from the main
toolbar.

 Once you’ve started the debug player, it will run until it
encounters an error or a break point. It will then show the current
stack of methods, as well as any variables relevant to the scope
of the break point. In Figure 17.4, you can see how this informa-
tion looks inside the Trace method from earlier in the chapter. We
can see the values in the TraceUtil class, such as the fi lter array
and throwErrors fl ag, as well as values in the method we’re cur-
rently inside (the message and category). Now try setting a break
point in a piece of code and explore the debugger further on
your own.

298 Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT

 Like traces, debugging is very useful inside of Flash, but often
errors and problems don’t crop up until you’re in the fi nal phases
of a project and a game is in the browser. If you have the Flash
debug player installed in your browser (as any self-respecting
Flash developer should), you can debug a SWF remotely with
Flash open in the background. To do this, you must fi rst com-
pile the SWF in debug mode; this includes some extra data (such
as break points) that the debugger can pick up. You may have
noticed that the size of a SWF in debug mode is larger than one in
normal mode. Next deploy your SWF on a remote server to test.
Go into Flash and select Debug → Begin Remote Debug Session →
ActionScript 3.0. You’ll notice at this point that the Output win-
dow goes into an idle mode, waiting for a connection. Finally,
load the SWF in a browser, and Flash will connect to it automati-
cally. While this can be a tedious series of steps to follow every
time you deploy new builds to a server, it is invaluable when a
bug occurs in the browser but not inside Flash.

 Performance/Optimization
 In addition to traditional debugging (fi xing errors), an impor-

tant component of game quality assurance (QA) is performance
testing. This includes simply playing the game on a variety of

 Figure 17.4 The method stack in the debugger, and the variable browser.

Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT 299

 different machines to determine the lowest threshold for your sys-
tem requirements. If your game is going to be in front of a wide
audience or kids (who often have older, hand-me-down comput-
ers), it needs to be able to hold up on even modest machines. Every
game’s needs are different — a puzzle game is likely going to need
less CPU power and memory than a side-scrolling action game.

 The catch to performance testing is that on the surface all
you have is a “ feeling ” for how the game is supposed to play.
Obviously, if a game is maxing out your CPU usage every
moment it’s running, you have a problem, but usually the differ-
ences are subtler. You can only eyeball the frame rate, and most
system memory viewers don’t separate browsers into discrete
threads, so it can be diffi cult to get an accurate gauge of just how
the game is performing. In this section, we’ll create a couple of
tools you can use to add basic frame rate and memory monitor-
ing to your game. We’ll combine both classes into an FLA called
PerformanceProfi ler, which you can open from the Chapter 17
examples folder.

 The FrameRateProfi ler Class
 Most Flash games don’t consistently run at a perfect fi xed

frame rate. The rate fl uctuates based on how much information
the Flash Player is trying to process at that moment, and what
else is going on in the browser (and the rest of the system, for that
matter). When you profi le a game for frame rate performance,
you want to take a sample over a period of time and average it. To
do this, we will create a simple Sprite-based component that will
allow us to monitor the frame rate right on the Stage.

 package {
 import fl ash.display.Sprite;
 import fl ash.events.Event;
 import fl ash.utils.getTimer;
 import fl ash.text.TextField;

 public class FrameRateProfi ler extends Sprite {

 private var _previousTime:int;
 private var _sampleSize:int = 30;
 private var _sample:Vector.<Number>;

 [Inspectable(defaultValue = 1,name = " Decimal Precision ")]
 public var precision:uint = 1;

 public var textField:TextField;

 To start out the class, we set up variables to store the number
of samples we’ll collect, as well as a Vector object to keep track
of them and the level of decimal precision we want to display
when viewing the frame rate. Since this is going to be a compo-
nent, we’ll expose the precision variable so this can be set from

300 Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT

 inside the Flash component inspector. We expose it using the
Inspectable metadata tag.

 public function FrameRateProfi ler() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage, false,
0, true);
 addEventListener(Event.REMOVED_FROM_STAGE,
removedFromStage, false, 0, true);
 _sample = new Vector.<Number>();
 }

 [Inspectable(defaultValue = 30, name = " Sample Size ")]
 public function set sampleSize(value:int):void {
 _sampleSize = Math.max(1, value);
 }

 public function get sampleSize():int { return _sampleSize; }

 [Inspectable(defaultValue = 0 × 000000, type = " Color " ,
name = " Text Color ")]
 public function set color(value:uint):void {
 textField.textColor = value;
 }

 public function get color():uint { return textField.
textColor; }

 In the constructor, we simply initialize the vector and assign lis-
teners so the component knows when it is added to and removed
from the Stage. Next we expose two other accessor methods for
defi ning the sample size (number of frames we’ll use to get our
average) and the color of the text fi eld. This way the same com-
ponent can be used on a variety of different backgrounds and still
be readable.

 private function addedToStage(e:Event):void {
 addEventListener(Event.ENTER_FRAME, onEnterFrame, false, 0,
true);
 _previousTime = getTimer();
 }

 private function removedFromStage(e:Event):void {
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 private function onEnterFrame(e:Event):void {
 var newTime:int = getTimer();
 var rate:Number = 1000/(newTime-_previousTime);
 _sample.push(rate);
 if (_sample.length > _sampleSize) _sample.shift();
 _previousTime = newTime;
 var avg:Number = 0;
 for each (var value:Number in _sample)
 avg + = value;
 avg / = _sample.length;
 textField.text = avg.toFixed(precision);
 }

Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT 301

 When the component is added to the stage, the onEnterFrame
script starts getting called on every frame cycle. Each time it fi res,
we determine the amount of time between frames and divide it
into 1000 milliseconds to determine the frame rate. This rate is then
added to the samples vector. Once the vector has exceeded the sam-
ple size we specifi ed earlier, older elements at the front are removed.
The text fi eld is then updated with an average of the sample.

 If you open the PerformanceProfi ler.fl a fi le, you can see how this
class is attached to a clip in the library called FrameRate Profi ler, as
well as in the component defi nition for that same clip. Once on the
Stage, you can set the three exposed properties in the Component
Inspector panel, which is accessible from the Window toolbar.
Next we’ll look at a similar class for profi ling memory usage.

 The MemoryProfi ler Class
 In this class, we’ll create a component much like our

FrameRateProfi ler, which will simply monitor the amount of
memory the Flash Player is using over time. This will allow you to
see any large spikes in memory usage that are directly caused by
Flash or your game.

 package {

 import fl ash.display.Sprite;
 import fl ash.events.Event;
 import fl ash.events.TimerEvent;
 import fl ash.utils.Timer;
 import fl ash.system.System;
 import fl ash.text.TextField;

 public class MemoryProfi ler extends Sprite {
 private var _timer:Timer;
 private var _interval:Number = 5;

 public var textField:TextField;
 public function MemoryProfi ler() {
 addEventListener(Event.ADDED_TO_STAGE, addedToStage,
false, 0, true);
 addEventListener(Event.REMOVED_FROM_STAGE,
removedFromStage, false, 0, true);
 _timer = new Timer(interval * 1000);
 }

 Because memory does not fl uctuate at the same frequency as
frame rate, we only need to check the memory usage every few
seconds. Check much more often than that and you’ll be tax-
ing the processor more than you need to for the same result. By
default, this component checks every fi ve seconds.

 [Inspectable(defaultValue = 5,name = " Sample Interval ")]
 public function set interval(value:Number):void {
 _interval = Math.max(1, value);
 _timer.delay = _interval * 1000;
 }

302 Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT

 public function get interval():Number { return _interval; }

 [Inspectable(defaultValue = 0 × 000000, type = " Color " ,
name = " Text Color ")]
 public function set color(value:uint):void {
 textField.textColor = value;
 }

 public function get color():uint { return textField.
textColor; }

 Like the previous class, we expose two values to the
Component Inspector — the interval at which we want to check
the system memory and the color of the text fi eld.

 private function addedToStage(e:Event):void {
 _timer.addEventListener(TimerEvent.TIMER, onTimer, false,
0, true);
 _timer.start();
 onTimer(null);
 }

 private function removedFromStage(e:Event):void {
 _timer.stop();
 }

 private function onTimer(e:TimerEvent):void {
 var memoryUsed:Number = System.totalMemory/1024;
 var memoryUnit:String = " k " ;
 if (memoryUsed > 1024) {
 memoryUsed / = 1024;
 memoryUnit = " mb " ;
 }
 textField.text = " Memory Used: " + memoryUsed.
toFixed(1) + memoryUnit;
 }

 As before, adding and removing the component starts and stops
the Timer, respectively. Every time the Timer object runs, it converts
the amount of system memory used to kilobytes. If the amount of
memory used is about 1024k (1 MB), we use megabytes instead.

 Together in the PerformanceProfi ler document, these compo-
nents provide a lot of useful information. You could even con-
vert them to precompiled clips (by right-clicking on them in the
library and selecting Covert to Compiled Clip), at which point
they would be entirely self-contained and portable to any fi le,
regardless of where the class AS fi les are. When combined with
the Activity Monitor on a Mac or the Task Manager on Windows,
you can use these two components to easily do real-time, statisti-
cal monitoring of your game on multiple machines.

 The Sample Package
 Sometimes in the process of debugging and optimization

you’re able to narrow down the source of a performance drain to

Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT 303

 a handful of culprits. Game engines that manage a lot of data (like
a large action game) often generate a lot of hefty objects in mem-
ory to store all the data. Prior to Flash CS4, it was not possible to
get information about how much memory objects actually con-
sumed, other than as a sum total. In CS4, Adobe introduced a set
of classes that were originally part of the Flex Builder debugging
set. This package and its primary class are known as the Sampler.
This is because its primary function is to take samples of mem-
ory data to determine which methods are called the most and
which objects are eating the most resources. It’s worth noting that
these classes and methods only function as expected within the
debugged Flash Player , and they are also compatible with certain
versions of Flash Player 9, if you are still targeting that platform.

 Sampling memory can become complicated, and the Sampler
package is capable of being used to write a full in-Flash debug-
ging tool for monitoring performance. That said, we’ll just be tak-
ing a quick look at a couple of the more useful “ quick ” methods
that can be used when trying to track down memory leaks.

 The getSize method at the root level of the Sampler package
accepts any object as a parameter and returns the amount of
memory that object consumes in bytes. In the Chapter 17 exam-
ples folder, you can fi nd a fi le called getSizeExample.fl a. All it has
is a little code on the fi rst frame to demonstrate memory usage:

 import fl ash.sampler.*;

 var arr1:Array = new Array(1, 2, 3, 4, 5);
 var arr2:Array = new Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 var arr3:Array = new Array();

 trace (" Array 1: " ,getSize(arr1), " bytes ");
 trace (" Array 2: " ,getSize(arr2), " bytes ");
 trace (" Array 3: " ,getSize(arr3), " bytes ");

 In this example, there are three different arrays, each with a dif-
ferent number of values in them. The traces output the following:

 Array 1: 60 bytes
 Array 2: 80 bytes
 Array 3: 40 bytes

 As you might expect, Array 2 has twice as many elements as
Array 1 and takes up twice as much space over the empty Array 3.
This is also helpful because it shows the cost of an object before it
has even been populated with any data. Doing a little bit of math
reveals that each number (or int, in this case) consumes 4 bytes of
memory. This number may be small on its own, but consider that
most objects are far more complicated and contain many num-
bers, strings, Booleans, and other objects. Every little piece of
data adds up, and being conscientious of it at the onset of devel-
opment will help prevent problems later. To put it in perspective,

304 Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT

 refer back to the MixUp game from Chapter 14. The main game
object was around 500 bytes, but each individual square of bit-
map data was 100k (12 for a total of 1.2 MB). Code will almost
always be less than raw assets, like sounds or images. Look to
Chapters 5 and 7 for tips on how best to optimize these assets.

 Another useful set of methods in the Sampler package are
 getInvocationCount , getSetterInvocationCount , and getGetterInvo-
cationCount . These three return the number of times a method (or
getter/setter) has been called on an object. This information can
be helpful because it acts as an indicator for where your time opti-
mizing code should be spent. Say you have a game that involves
artifi cial intelligence (AI) making decisions about where enemy
players move during gameplay. The logic involved is likely going
to poll a number of methods frequently. Taking a measurement of
the frequency with which these methods are called at the end of
a game will give you a summary you can use to determine where
to focus your time. I’ve created a SamplerUtil class, similar to
TraceUtil, which provides a static method for getting this informa-
tion easily. It also makes use of an overridden toString method to
make the returned data easily readable. Before we look at the func-
tion for polling, however, we should look at a helper class I also
created to store the information retrieved about the methods:

 internal class MethodObject extends Object {

 public var name:String;
 public var count:int;
 public var getCount:int;
 public var setCount:int;

 public function MethodObject(name:String,
 count:int = 0,
 getCount:int = 0,
 setCount:int = 0) {
 this.name = name;
 this.count = count;
 this.getCount = getCount;
 this.setCount = setCount;
 }
 public function toString():String {
 if (count > 0) {
 return " Method " + name + " called " + count +
 " times. " ;
 } else {
 return " Accessor " + name + " set " + setCount +
 " times and gotten " + getCount + " times. " ;
 }
 }
 }

 The MethodObject class is simply a data container. We could
have also used a generic object, but because we’ll be creating a
bunch of these it is better to statically type the properties we will be

Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT 305

 using. The toString method is also easier to add in this format. Each
of these objects keeps track of how many times a method or get-
ter/setter is called. The toString method checks to see what type of
function it is based on the number of types of calls and returns an
appropriately formatted string. It’s worth noting at this point that
if an accessor function is read-only (just a get , no set), the setCount
will be – 1. Now we’ll look at the method that uses these objects:

 package {

 import fl ash.sampler.*;

 public class SamplerUtil {

 public static function pollMethods(obj:Object):Array {
 var methods:Array = new Array();
 for each (var name:QName in getMemberNames(obj)) {
 var methodObject:MethodObject;
 if (isGetterSetter(obj, name)) {
 methodObject = new MethodObject(name.localName, 0,

 getGetterInvocationCount(obj, name),

 getSetterInvocationCount(obj, name));
 } else {
 methodObject = new MethodObject(name.localName,

 getInvocationCount(obj, name));
 }
 if (methodObject.count > 0 ||
methodObject.getCount > 0 || methodObject.setCount > 0)
 methods.push(methodObject);
 }
 methods.toString = function () {
 return this.join(" \n ");
 }
 return methods;
 }
 }
 }

 When the pollMethods function is called, it creates an array
and then iterates through the passed object with the getMember-
Names method of the Sampler package. This method will return
all public and private member variables of a class object. What is
returned is a list of QName objects.

 Techie Note. QName?

 The QName (or Qualifi ed Name) class is usually associated with XML,
as it is part of the E4X standard. We won’t cover its use with XML, but in
regular ActionScript it stores a properly packaged reference to the name of
a specifi c member variable. To get the name of the variable as we’re used
to looking at it, you simply specify the localName property of a QName
object. Most of the time you likely won’t deal with QNames, unless you’re
working very heavily with XML.

306 Chapter 17 SQUASH ’EM IF YOU’VE GOT ’EM: THE BUG HUNT

 A new MethodObject is created for each QName object returned,
storing its localName property and the number of times it was
invoked, either as a method or as a getter/setter. Since we’re only
interested in methods, not just plain properties, we don’t bother
to add to the array any objects that don’t have at least one invoca-
tion. When the loop is fi nished running, we have an array of only
those methods that were called at least once, and it can easily be
sorted based on the “ count, ” “ getCount, ” or “ setCount ” properties
of each MethodObject. As a last step before returning the array, we
format the toString method of the array to use line breaks to sepa-
rate each element (as opposed to the default commas). This will
make any trace statements with the array automatically formatted
for readability.

 I encourage you to continue exploring the rest of the Sampler
package and use it to create helpful debugging tools. I hope that
Adobe will continue to provide us with more information we can
use in future versions of the Flash Player. My fi ngers are crossed
for CPU and GPU usage polling …

 Summary
 Debugging and optimization are extremely important tasks

in game development that should never be omitted because of
lack of time (or any other reason, for that matter). If your game is
buggy or sluggish, people won’t want to play it.

307
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 ON YOUR GUARD

 No matter where your game is hosted on the Internet, if peo-
ple come and play it, someone will invariably attempt to hack it.
Don’t take it personally; some people are just jerks. Hacking can
include everything from abuse (like jamming the game with input
all at once in the hopes of crashing it), to botting (where someone
writes a program to play your game for them), to harvesting or
changing data in memory and information sent over the Internet.
These jerk people are motivated by a variety of factors. Perhaps
you are giving away some prize and they want to cheat to win
it. Maybe there is a scoreboard associated with your game and
they want to be number one. Sometimes, they just want to prove
to their other hacker jerk friends that they can do it. The hacker
community doesn’t let you rest on your laurels; if you haven’t
hacked something today , you’re not worth the smelly couch you
sleep on in your mother’s basement. Sorry, I digress.

 There are a number of strategies you can use to make it very
diffi cult for someone to hack your game. Notice I did not say
you could prevent it 100%. Let me stress this point: No game is
unhackable. To make such a claim would be to invite a whole host
of the best jerks to prove you wrong. The goal with these strate-
gies is that, with every roadblock you introduce, a few less people
will be willing to try. The techniques I will outline in this chap-
ter cover two main areas: malicious use (which includes abusive
behavior and botting) and data protection.

 Malicious Use
 Some games are more susceptible to abuse by players than oth-

ers. Games that rely heavily on keyboard input, like many puzzle
games, are particularly prone to being attacked. This is because it

 18

308 Chapter 18 ON YOUR GUARD

 tends to be easier for hackers to write bots (programs to do work
for them) and other scripts for keyboard-driven games. It’s harder
to track where the mouse is on a screen because that can vary
from machine to machine depending on resolution, position of
buttons, etc. Here are some tips to help block keyboard hacking.

 Turn Off Listeners When You Don’t Need Them
Anymore

 It ’s often very tempting when developing, particularly under
a deadline, to just add listeners to things like keyboard input at
the onset of a game and then just remove them at the very end.
Unfortunately, giving people uncontrolled input can open you up
to tampering by bots and other scripts. If you’re expecting input
from a user, add a listener only when you’re ready to receive it,
and turn it off after you’ve received your fi rst piece of input. This
allows you to analyze the data you’ve been given before opening
the pipe again. This is another place where weakly referenced lis-
teners are very important. When objects that weak listeners are
attached to are tagged for garbage collection, the listeners will get
removed automatically. Refer back to Chapter 4 to learn how to
use weakly referenced listeners.

 Set a Minimum Delay for Accepting Input
 Often bots are used to speed up the progress of a game faster

than a human would be able to accomplish it. If you defi ne an
interval (which depends heavily on the style of game in question)
during which the listener ignores input, you can force hackers to
slow down their bots to a human rate of speed. Here is what code
for this might look like:

 import fl ash.utils.getTimer;

 private const MINIMUM_INPUT_DELAY:int = 150; //milliseconds
 private var _timeOfLastInput;

 private function onKeyDown(e:KeyboardEvent):void {
 if (getTimer()-_timeOfLastInput < MINIMUM_INPUT_DELAY)
 return;
 _timeOfLastInput = getTimer();
 //OTHER INPUT-RELATED CODE
 }

 Detect Malicious Use and Shut Down the Game
 This is a more drastic measure and probably only worth imple-

menting if: (1) you have a legal obligation to other users to pre-
vent hacking (because of prizes or money), or (2) you are certain
people are hacking your game in a particular, consistent way. The
second of these two criteria is harder to defi ne and can lead to

Chapter 18 ON YOUR GUARD 309

 nonoffending users reaping a consequence designed to catch
hackers. There is a balance to be struck with this approach, par-
ticularly if you have less than adequate data to prove when
someone is hacking your game. Occasional rapid input on a
keyboard-driven game could just mean the player is genuinely
skilled. You don’t want innocent players to have a lousy experi-
ence just because you were trying to stop the jerks.

 Data Protection
 While bots and malicious users are certainly a concern, they

tend to be less of a problem than players who attempt to manipu-
late the data inside, being received, or being sent from the game.
This next section discusses ways to protect your game data, both
in memory and over the wire.

 Memory Hacking
 Writing a bot for a specifi c game can be a time-consuming

effort, and, like I mentioned above, bots cater more toward a spe-
cifi c type of game. It would be extremely diffi cult to bot a side-
scrolling action game, because the bot would have to know a lot
more about the changing game screen than is probably possible.
In these cases, hackers are more likely to just try to manipulate
a few values in their computer’s memory in the hopes of giving
themselves a high score. There are several utilities that exist that
will allow people to modify memory addresses, and a decent
hacker won’t have any trouble fi nding them. It would be dan-
gerous to just start changing memory values blindly, so the way
these programs tend to work is by analyzing which memory
addresses have changed over a period of time and telling the user
what is in each one. If a hacker starts the utility and then plays a
couple of turns in the game, they will probably be able to narrow
down relatively quickly where data like their score or progress are
kept. They then use the same utility to change the value in their
favor. At this point you may be saying, “ Well, how am I going to
combat that ? ” Don’t worry; there are a few things you can do that
will make the jerks ’ jobs a lot harder.

 Hash Data
 One way around memory hacks is to hide vital data you’re

storing. You can do this any number of ways, but one effective
method is to use a technique known as hashing . A hash is a form
of cryptography intended to validate a piece of data by running
a series of procedures on it. Depending on the hash algorithm
you’re using, the result of a hash function will be a string of the

310 Chapter 18 ON YOUR GUARD

 same length every time. If you’re scratching your head right now,
don’t fret; we’re about to look at some examples. For instance, a
common hashing algorithm is known as MD5. When given data
of any length, it will return a 32-character series of letters and
numbers. Think of this as that piece of data’s signature — every
time an MD5 hash is run on that data it will produce the same
result. As an example, the string “ Real World Game Development
with Flash CS4 ” will always output:

 ac0c8d53e3a5ba2670126be815219c78

 My name will always result with:

 e640754e479fa16c1320c97e65ccdb13

 It ’s important to note that these hash results are not guaran-
teed to be unique; that is, two different pieces of data could fea-
sibly result in the same 32-character string. This phenomenon is
known as collision , and some hash algorithms are more suscep-
tible to it than others. MD5 has some weaknesses where this is
concerned, but it is also very fast, so if you are changing values
regularly over a period of time it is probably worth the decreased
security. Another method, known as SHA-256, is known to have
a lower collision probability, but it is slower to process. It is more
suited to data being sent outside of Flash, which we will discuss
shortly. Now let’s look at a practical example of how you could use
a hash to protect a game’s score.

 Consider the following very simple class that stores a number
in a private variable through public accessors:

 package {

 public class Game {

 private var _score:Number;

 public function set score(value:Number):void {
 _score = value;
 }

 public function get score():Number {
 return _score;
 }
 }
 }

 This code contains no protection from hacking and the _ score
property is very susceptible to having its value changed. We’ll now
introduce an MD5 algorithm. You can fi nd many different imple-
mentations of MD5 on the web; most that are in ActionScript
started as JavaScript. I have included one in the Examples folder
for this chapter. You can use it along with the sample Game.as fi le:

 package {

 public class Game {

Chapter 18 ON YOUR GUARD 311

 private var _score:Number;
 private var _scoreHash:String;
 private var _scoreDate:Date;

 public function set score(value:Number):void {
 _score = value;
 _scoreDate = new Date();
 _scoreHash = MD5.hash(_score + _scoreDate.toDateString());
 }

 public function get score():Number {
 if (_scoreHash ! = MD5.hash(_score +
_scoreDate.toDateString())) return 0;
 return _score;
 }
 }
 }

 Now we’re getting somewhere. Each time the score property is
set, it will not only store the actual value but also a hash of the
score to check against when reading the value back out. MD5 and
similar hash algorithms work better when you have more data to
encrypt as that makes it less likely that a matching string can be
generated by something else. Since a score is likely to be only a
handful of characters, we also generate a timestamp from a Date
object (yet another way to try to make the sequence unique) and
append it to the score. In this instance, the date is what is known
as the salt of the hash. It is the piece of data that is irrelevant to
what you’re trying to protect but is used to further obfuscate it.
This way, when the score is set, three different values have been
written to memory. If any one of them changes, the score will be
invalid when it is read back out. In this case, if the hash doesn’t
match, I return 0 instead of the actual score value. You could even
throw an error if you wanted to, instead of returning anything,
but it’s important to consider how you want the game to behave
once illegal activity is detected. A big advantage of this method is
that it is highly customizable. There are any number of proper-
ties you could use as the salt, and they need not be the same per
game or even the same per class. In fact, the more you vary your
use of them, the harder it will be for a hacker to determine how
you’re generating the hash at any given moment. Another unique
identifi er you could use as a salt is the server string for the user’s
computer. It is a property of the Capabilities class and produces a
nice long string of many values for that machine:

 import fl ash.system.Capabilities;
 //
 _scoreSystem = Capabilities.serverString;
 _scoreHash = MD5.hash(_score + _scoreDate.toDateString() +
_scoreSystem);

 Once again, this does not eliminate the possibility of someone
still managing to hack your game, but it does make it a bigger

312 Chapter 18 ON YOUR GUARD

 pain for a hacker than moving on to a game that is an easier tar-
get. You also need to weigh performance against how many val-
ues you want to hash. Usually a couple of main values is enough.
Values that change very frequently (like every frame) will be
harder for hackers to target anyway, and the added processing
required to run MD5 multiple times a frame could get heavy on
slower machines.

 Break Up Data
 Another way to help obfuscate data is to break it into pieces

and reassemble it only when you need it. This method is particu-
larly helpful if you have strings in your code that contain impor-
tant information, like a key or passwords for levels. By breaking
up the string into single characters in an array, for example, you
help obscure your data from memory readers. Any single piece
of the data is likely to be useless on its own, and assembling it
only when you need it (and subsequently discarding the assem-
bled version) ensures that the value can’t simply be fi shed out of
memory:

 private const PASSWORD_LEVEL_1:Array = [" H " , " A " , " C " , " K " , " E " ,
 " R " , " S " , " S " , " U " , " C " , " K "]

 With the above example, a simple toString() call on the array
will return you the reassembled value, but in memory it will store
11 different values.

 Insert Red Herrings
 This method can kind of go off the deep end if you’re not care-

ful, but another avenue to take is to insert meaningless data along
with the data you care about. The idea here is to have so much
data moving around and changing at any given moment that
a memory utility can’t differentiate between the real values and
the “ noise. ” The catch is that unless you have a solid strategy for
making this distinction yourself you run the risk of falling victim
to your own defenses. This also involves quite a bit more hassle
to implement, so it should be reserved only for information that
is extremely critical. If we were to build on the previous example,
we could store random numbers in among the real data and then
store a separate array of values that map to the correct indices in
the fi rst array:

 private const PASSWORD_LEVEL_2:Array = ["H", 1,"A", new
Object(), "C","K", new Date(), "E","R","S", .5,"S","U", new
Object(), "C","K"];
 private const PASSWORD_LEVEL_2_MAP:Array = [0, 2, 4, 5, 7, 8,
9, 11, 12, 14, 15];

Chapter 18 ON YOUR GUARD 313

 public function getMappedValue(name:String):String {
 var str:String = "";
 var stringArray:Array = this[name];
 var mapArray:Array = this[name + "_MAP"];
 for (var i:int = 0; i < mapArray.length; i++) {
 str + = stringArray[mapArray[i]];
 }
 return str;
 }
 //
 var password:String = getMappedValue("PASSWORD_LEVEL_2");

 As you can see, this is quite a bit of trouble to go to for very many
values and also begins to eat a considerable amount of memory to
store just a simple 11-character string. Ultimately you must weigh
the cost of protecting your data.

 Protecting Sent and Received Data
 More and more Flash games out today are making use of exter-

nal data, both for loading content and for posting data (like lead-
erboards). I discussed some of these techniques back in Chapter 9
using XML. This data is very vulnerable to tampering, even more
so than that in memory. Anyone with a basic type of HTTP activ-
ity monitor can see the data in plain sight coming in and going
back out. The best method for protecting this data is encryption,
and there are a few different approaches for encrypting data.

 Hashing
 Much like the previous memory examples, using a hash algo-

rithm to validate data that is sent to a server from Flash is a great
way to secure it. Depending on the nature of the data, you may
want to use an even more robust hash, like SHA-256. It is slower
to process than MD5, but usually data transactions are things like
score postings or saving profi le information: events that do not
repeat rapidly in succession. When you use a hash to send data to
a server, both Flash and the server need to have two things:

 ● The salt for the hash
 ● The order of operations to recreate the hash

 Here is an example of how you might send out a score to a
server:

 private const LEADERBOARD_URL:String =
"http://www.fl ashgamebook.com/savescore.php";
 private const LEADERBOARD_SALT:String = "hackerjerks";

 public function saveScoreToServer():void {
 var urlVars:URLVariables = new URLVariables();
 urlVars.score = score;
 urlVars.date = new Date().toDateString();

314 Chapter 18 ON YOUR GUARD

 urlVars.checksum = MD5.hash(score + date + LEADERBOARD_SALT);
 var urlRequest:URLRequest = new URLRequest(LEADERBOARD_URL);
 urlRequest.method = URLRequestMethod.POST;
 urlRequest.data = urlVars;
 var urlLoader:URLLoader = new URLLoader(urlRequest);
 }

 This method would send the score and timestamp, along with
the hash to check against. The server would need to know that
the salt is “ hackerjerks ” and that the three properties must be
concatenated together and hashed to match. This works well for
data that you don’t mind people seeing but want to validate as
legitimate once it arrives at its destination. This isn’t a solution for
loading data that you don’t want to be seen at all, like solutions
to a puzzle or sensitive user data being loaded from a database.
For these instances, we turn to a method known as ciphering .

 Ciphering
 Unlike a hash, which is a one-way encryption (there is no way

to get back to the original value from a hash), ciphering is two-
way encryption. It turns the data in question into different data
and then back to its original state. Most ciphers (the worthwhile
ones, anyway) have a key associated with them that both sides
must have when working with the data. A particularly popu-
lar and powerful encryption cipher is the Advanced Encryption
Standard (AES). Ciphering is even slower than hashing, and results
in a string longer than the data initially inputted. Here is what the
name of this book would look like encrypted in AES with my fi rst
name as the key:

 /pv/JFamBEGYRkrA8J8aIpceB+IqUb6XCllUPR8v1SNe7bugwDNtMhqD4J0LWP8g

 As you can see, it is totally unintelligible from the original data.
Without the key, it would take a long time for even the best appli-
cations to crack the encryption. For games with external puzzle
or other textual content, running the data through a cipher like
this before putting it on a public server is a very good idea. Other
ciphers are less heavy on the processor than AES. Algorithms like
the Extended Tiny Encryption Algorithm (XTEA) or RC4 are suit-
able for encrypting noncritical data and are much faster. I have
posted a link to a free encryption library for AS3 on fl ashgame-
book.com. It includes all of the popular hash and cipher methods
you probably ever need to use.

 SWF Protection
 The last item we’ll look at in this chapter is probably the one

most out of our collective control — protecting the code inside

Chapter 18 ON YOUR GUARD 315

 your SWFs. A number of utilities exist to extract ActionScript
from a SWF, making it plainly readable, albeit without comments.
Adobe has yet to seriously tackle the issue of SWF security, and
as a result just about every SWF is vulnerable, regardless of Flash
version. A few companies have written software that obfuscates
the data inside a SWF to make it harder to extract. One such
program is called SWF Encrypt by Amayeta Software. While far
from perfect, it does an admirable job of at least making hack-
er’s jobs harder by turning the output of most extraction utilities
to garbage. In the end, running a program like this and selecting
 “ Protect from Import ” in the publish settings of your SWF are the
best options if you have sensitive data inside your game. I hope
Adobe will work to remedy this lack of security in future versions
of Flash. Until then, you can at least lower your likelihood of being
hacked. You have to remember that these jerks are usually lazy
and will go for the low-hanging fruit. If someone else’s work is less
protected than yours, they are a more likely target than you.

 Summary
 Now you have a number of new methods in your arsenal for

protecting your work. Hacking and security on the Internet are a
continual arms race. As one company fi nds a new way of securing
data, another individual will fi nd a way to expose it. The best you
can do is to protect yourself as much as possible. Well, that and
if you ever meet someone who you discover is a hacker in their
spare time, break their hands.

This page intentionally left blank

 AFTERWORD: IT’S ALL BEEN
DONE, SO DO SOMETHING
DIFFERENT

 You made it to the end of this book — give yourself a pat on
the back! We’ve covered a lot about the process of game devel-
opment, not to mention a lot of code. Now, like a public service
announcement at the end of a kid’s cartoon, I want to leave you
with a few parting thoughts on where Flash games are going and
how you can affect it.

 With the advent of ActionScript 3, Flash has started to attract
a lot of attention among developers from more traditional pro-
gramming backgrounds as a viable game platform. The rapid
development cycle, ubiquity of the Flash Player, and the variety
of tools that work seamlessly with Flash are all appealing to game
developers. However, like Hollywood and the mainstream con-
sole game industry, there’s the ever-looming possibility of stagna-
tion. For every original, interesting Flash game on the Internet,
there are a dozen Sudoku, Bejeweled, or Tetris clones taking up
way more of the spotlight. They’re cheap and quick to produce,
and many interactive marketing agencies see them as easy fi ller
to sell their clients. I know — I used to work at agencies like that.
Those games have their place, but we as a development commu-
nity can do better.

 I challenge you to take the knowledge you gain from this book
and strive to do something different and original. Every new,
fun, and inventive game released in Flash further legitimizes
and empowers the platform, as well as its community. As part
of this challenge, there will be an area on fl ashgamebook.com
where I will happily feature anyone’s work that is new and dif-
ferent. Thank you for reading this book, and good luck with your
creations!

317

This page intentionally left blank

A-1
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 WEBCAMS AND MICROPHONES

 Ever since Flash 6, users have been able to make use (to a lim-
ited extent) of the cameras and microphones connected to their
computers. The original purpose of these features was for use
with the Flash Media Server, a multi-user platform for streaming
media between users. Because Adobe has not added much func-
tionality to these components since their creation, little more can
be done with them today than when they were fi rst released. In
fact, one might wonder why they’re being brought up in a book
about game development at all.

 There are actually more applications for these devices than
you might think. More and more computer users are purchas-
ing machines with built-in cameras and mics (including close to
every Mac for the past several years), making content that uses
them more relevant to the general public. Even though the fea-
ture set is limited, each device has some unique methods to it
that can be used as a controller, or in conjunction with interface
elements. We’ll start out by looking at microphones fi rst.

 Testing 1, 2, 3: The Microphone Object
 When not connected to the Flash Media Server (FMS), the

microphone can really only perform one function: It can route
back out to your speakers. This in and of itself is not useful except
perhaps for testing; you cannot perform any operations on the
sound data going out, and if your speakers are very loud you’ll
experience some echo feedback. However, you can read the activ-
ity level of the microphone while it is being processed. That level is
anywhere from 0 to 100, representing a range from quiet to loud.
Let’s look at an example of how to set up a microphone for input
and use the activity level for a real purpose. You can follow along
with the MicrophoneExample.fl a fi le in the Appendix A folder.

 APPENDIX A

A-2 Appendix A WEBCAMS AND MICROPHONES

 The MicrophoneExample fi le uses a single document class for
the functionality we’ll explore. The class extends MovieClip since
it is purely a wrapper for the document:

 public class MicrophoneExample extends MovieClip {

 private var _mic:Microphone;
 public var microphoneLevel:MovieClip;

 This class will keep two persistent variables. One is a reference
to the Microphone object and the other is a vertical bar inside a
clip called microphoneLevel . This clip will ultimately refl ect the
activity level of the microphone. Now we’ll take a look at the class
constructor:

 public function MicrophoneExample() {
 _mic = Microphone.getMicrophone();
 _mic.setLoopBack(true);
 _mic.soundTransform = new SoundTransform(0);
 _mic.addEventListener(ActivityEvent.ACTIVITY, micActivity,
false, 0, true);
 }

 Microphone instances aren’t created using the new keyword;
Flash has a list of all available microphones for the computer
and will return the default device by calling getMicrophone . Once
the instance is created, the microphone is activated by calling
 setLoopBack and passing it a parameter of true . Since we’re not
using FMS with this fi le, Flash needs a place to route the audio
from the microphone to make it available to us. Until this method
is called again with a parameter of false, any sound the mic picks
up will be passed through to the speakers. For this example,
we don’t want the sound to come back through, so we set the
 soundTransform of the object to a volume of 0. The microphone
will still refl ect its current activity level in code, but we won’t hear
anything. Finally, we add a listener for any ActivityEvents that the
mic generates:

 private function micActivity(e:ActivityEvent):void {
 if (e.activating) {
 micUpdate(null);
 addEventListener(Event.ENTER_FRAME, micUpdate, false, 0, true);
 } else {
 removeEventListener(Event.ENTER_FRAME, micUpdate);
 }
 }

 ActivityEvent objects are a derivative of normal events, with
an additional property that tells whether the device dispatching
the event is in the process of activating or deactivating. In this
case, if the microphone registers anything more than a negligible
amount of sound data, it will dispatch this event with the activat-
ing property set to true . If the mic has gone a specifi c amount of

Appendix A WEBCAMS AND MICROPHONES A-3

 time (which can be set per Microphone object) without detecting
any audio, it will dispatch this same event with activating set to
 false . When the microphone becomes active, we attach a frame
listener that will be called the micUpdate method. Likewise, when
the microphone goes dormant, we’ll remove the listener to clean
up after ourselves:

 private function micUpdate(e:Event):void {
 microphoneLevel.scaleY = Math.max(.01, _mic.
activityLevel/100);
 }

 Though it is the code at the heart of this exercise, the micUp-
date method is only one line. It sets the scaleY value of the micro-
phoneLevel clip to the value of the microphone’s activity level
(with a minimum value of .01 to prevent it from disappearing
altogether). This is the extent of the functionality we will include.
When this SWF is exported, Flash should prompt you to allow it
access to your microphone (assuming you have one). After agree-
ing, you should see a bar on the screen that raises and lowers with
the amount of sound it picks up.

 Applications
 Like I mentioned before, this is obviously very simplistic func-

tionality but it has a number of potential applications in games.
For example, in a game where a character slowly falls down the
screen, the activity level could be used as a boost to keep the
character afl oat. Since it does not discriminate between the tones
it receives, you could tell the player to blow into the microphone
to produce the noise level required. Another possibility is a tim-
ing game where you must create a loud noise in conjunction with
some rhythmic activity on the screen. Along those same lines,
you could make players create softer or louder sounds to navigate
their characters through a series of obstacles.

 Considerations
 For the purposes of the previous example, we applied no smooth-

ing whatsoever to the data being received from the microphone. As
a result, the bar jumped rather violently from one position to the
next. To account for this and make the data less erratic when dis-
playing it on-screen, we can take a sampling of the data over time
and average it. This will smooth out any sudden peaks or drops.
Here is a quick example of how the previous class could be modi-
fi ed to do this. First, we’d need to add two properties to the class:

 private var _micLevels:Vector.<Number> = new Vector.<Number>();
 private const _sampleSize:int = 5;

A-4 Appendix A WEBCAMS AND MICROPHONES

 The fi rst is a vector (typed array) that will hold the sample val-
ues we pull from the microphone. The second is a constant defi n-
ing how many samples the vector should contain before pushing
older values out. We’ll need to now make some additions to the
 micUpdate method and include a new method to average the
values:

 private function micUpdate(e:Event):void {
 _micLevels.push(Math.max(.01, _mic.activityLevel/100));
 if (_micLevels.length > _sampleSize) _micLevels.shift();
 microphoneLevel.scaleY = getAverage(_micLevels);
 }

 private function getAverage(values:Vector.<Number>):Number {
 var avg:Number = 0;
 for each (var value:Number in values) avg + = value;
 return avg/values.length;
 }

 Now , instead of assigning the microphone level directly to the
clip’s scaleY value, we push it into the vector and remove any
samples over the max of 5. We then assign the scale value with
the new getAverage method. This method simply adds all the val-
ues of the vector and returns the average. When the example is
exported, you’ll notice the activity bar raises and lowers much
more smoothly without the twitchiness it had before. You can
make it even smoother by increasing the sample size, but you’ll
start losing accuracy for very short sounds. If you were measuring
the activity level over a longer duration of time (like the exam-
ple I gave earlier of having someone blow continuously into the
microphone), a larger sample size would work fi ne. For shorter,
more punctuated sounds, keeping the sample size low will get
you closer to the true values.

 Where do you go from here? Come up with your own unique
application for how this simple functionality can play into a game
mechanic. Flash applications that make use of the microphone
are still pretty few and far between, so a fun game will stand out
from the crowd if it makes savvy use of the device. As we explore
the Camera object next, you’ll notice some similarities in syntax
and implementation.

 Lights, Camera Object, ActionScript!
 The ability to grab a live feed from a connected camera is a very

nice feature of Flash, even in its limited state. To see the image
from a camera, it must be attached to a Video object. Like the
Microphone class, all Camera objects have an activityLevel , which
represents the amount of motion in the video feed. When the
image is very still, the value is close to 0; when the entire image is
changing every frame, the activity level approaches 100. Now we’ll

Appendix A WEBCAMS AND MICROPHONES A-5

 look at how to set up a Camera object and display the feed on the
Stage. The associated fi le for this example is CameraExample.fl a
in the Appendix A folder.

 public class CameraExample extends MovieClip {

 private var _cam:Camera;
 private var _video:Video;

 public var activityLevel:MovieClip;

 We ’ll need to store references to both the Camera object we’ve
created as well as the Video object that will be added to the Stage.
Like the Microphone example, there is a clip on the Stage already
called activityLevel that will be scaled to represent the motion
rate of the Camera.

 public function CameraExample() {
 _cam = Camera.getCamera();
 _cam.setMode(stage.stageWidth, stage.stageHeight, 30);
 _cam.addEventListener(ActivityEvent.ACTIVITY,
cameraActivity, false, 0, true);
 _cam.addEventListener(StatusEvent.STATUS, cameraStatus,
false, 0, true);
 _video = new Video (stage.stageWidth, stage.stageHeight);
 _video.attachCamera(_cam);
 }

 As with Microphone objects, Camera instances are returned
by the getCamera method. To defi ne the dimensions and frame
rate of the video feed, we call the setMode method of the object
and use the values of the Stage dimensions. Next we create two
listeners. One is for ActivityEvents, similar to the Microphone.
The other is for StatusEvents, which represents changes in the
camera’s operating state. In this case, we’re interested in knowing
when the camera is activated after the user grants permission to
Flash to access the device. Finally, we create a new Video instance
with the same dimensions as the camera and attach it.

 private function cameraStatus(e:StatusEvent):void {
 if (e.code = = "Camera.Unmuted") {
 if (!_video.stage) addChildAt(_video, 0);
 }
 }

 To ensure the camera is initialized correctly, the cameraSta-
tus method adds the Video object to the Stage (underneath the
bar showing activity) when a status of Camera.Unmuted is sent.
This message is delivered when a user agrees to let Flash have
access to their camera.

 private function cameraActivity(e:ActivityEvent):void {
 //CAMERA WAS ACTIVATED
 if (e.activating) {

A-6 Appendix A WEBCAMS AND MICROPHONES

 addEventListener(Event.ENTER_FRAME, updateCamera, false, 0,
true);
 } else {
 removeEventListener(Event.ENTER_FRAME, updateCamera);
 }
 }

 When the camera is activated by motion, it creates a frame lis-
tener that will call the updateCamera method.

 public function updateCamera(e:Event):void {
 activityLevel.scaleY = Math.max(0, _cam.activityLevel/100);
 }

 Once again, just like the Microphone example, the camera’s
activity level is translated to the scaleY property of the clip on the
Stage. When this SWF is exported, it will show a full-stage video
feed from your camera (if you have one attached).

 Because the video feed is linked to a DisplayObject, it can be
captured and manipulated into BitmapData. To change this func-
tionality, we can simply add some code to the existing exam-
ple. A new fi le exists for this change in the Appendix A folder:
CameraBitmapDataExample.fl a. The two major changes are to
the cameraStatus and updateCamera methods.

 private var _currentImage:BitmapData;
 private var _stageImage:Bitmap;

 private function cameraStatus(e:StatusEvent):void {
 if (e.code == "Camera.Unmuted") {
 _stageImage = new Bitmap();
 addChildAt(_stageImage, 0);
 }
 }

 Two additional properties have been created in this example,
each storing related information about the image being captured
from the video. When the camera is activated, it instantiates and
adds a new Bitmap object to the Stage.

 private function updateCamera(e:Event):void {
 activityLevel.scaleY = Math.max(0,_cam.activityLevel/100);
 if (_currentImage) _currentImage.dispose();
 _currentImage = new BitmapData(_video.width, _video.height);
 _currentImage.draw(_video);
 _stageImage.bitmapData = _currentImage;
 }

 The updateCamera method has some additional function-
ality, as well. It checks to see if any residual image data exists,
disposes of it to free up memory, and then draws a new Bitmap
from the video feed. Upon viewing this example next to the last
one, there would appear to be no difference in the output, except
that because updateCamera is only called when the camera
detects signifi cant motion the image will freeze when still for too

Appendix A WEBCAMS AND MICROPHONES A-7

 long. This can be adjusted by either setting the motion thresh-
old for the camera much lower or by running the function every
frame whether or not the camera is detecting motion. Regardless,
it is very powerful to now have live bitmap data that can be used
for any number of different tasks and manipulated using any of
the fi lters available in the display package.

 Applications
 Where the Microphone class relies on changes in sound to be

of any real use in game development, the Camera class’s reac-
tion to motion can be put to similar use. A game could require
that a player is alternately active and inactive in their motions to
manipulate gameplay. Additionally, any puzzle games that make
use of static imagery could employ a live camera image to offer a
different experience.

 Conclusion
 Outside of their use with FMS, microphones and cameras can

be valuable input devices that can complement or even replace
the keyboard and mouse in certain instances. I hope that the
more developers make use of these tools, the more attention
Adobe will pay to making them even more robust and useful.

This page intentionally left blank

B-1
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 LOCALIZATION

 The Internet has brought people from different countries and
cultures together like nothing else in the past century. As content
on the web becomes more and more universally viewed around
the world, chances are that a game you develop may have to
be localized to other languages. In this appendix, we will walk
through an example of how support for many other languages
can be added relatively painlessly to an existing game.

 Key Points to Remember
 When you’re working on a game that you think will need to

be localized, there are a number of user interface (UI) consider-
ations to remember that will prevent headaches later.

 Use Fonts That Support Larger Character Sets
 While all the main fonts that are common across operating

systems (e.g., Arial, Verdana, Times) support very complete char-
acter sets, many individual-created font sets support only the
basic English alphabet. This becomes problematic when mov-
ing to just about any other language because letters with accents
or entirely new characters are not included. When selecting a
font, do your best to fi nd out through a site like Fonts.com if the
typeface supports the character sets you’ll need. If you’re local-
izing for the common Latin-based languages (English, French,
Italian, Spanish, and German), you’ll want the font to support the
sets known as Latin I and Latin Extended A. Most fonts made by
professional foundries should at least include these sets.

 APPENDIX B

B-2 Appendix B LOCALIZATION

 Always Leave Ample Room for Text Fields
 Whether you are working with an artist or designing the game

yourself, it’s a natural inclination to size and kern the text in an
interface so it looks proportional and doesn’t leave a bunch of
excess empty space. However, words or phrases in languages other
than English are very likely to be longer and therefore require more
space. You want to allow as much room as possible for this text so it
is not cropped or so small a point size it is unreadable. A good rule
of thumb, especially if you know the languages you are localizing to,
is to use a translator website such as Google Translate or Babel Fish
to fi nd the longest possible version of a word or phrase and size to
fi t that. This way you’re prepared for the worst-case scenario.

 Use Scrollbars for Long Sections of Text
 In any sections that house a lot of copy, like a rules page, it’s best

to go ahead and plan for a scrollbar, even if the English copy doesn’t
require it. If you use the built-in CS4 UI component scrollbar, it will
auto-hide itself when it is unnecessary. This allows you to not worry
about the copy getting too long to have to frame it graphically.

 Use Icons Instead of Text Wherever Possible
 If you have a button in your interface that sends a link to the

game to a friend, you could probably easily get away with giv-
ing the button an iconic symbol (such as an envelope) instead of
typing out “ email a friend. ” The more places you can reduce your
reliance on text altogether, the less you’ll have to make conces-
sions in the look and feel of your interface. As an addition to this
technique, the use of a tool tip (the small box that appears when
you roll over a button) is also a good idea. You generally don’t
have to worry about the length of the text in a well-designed tool
tip, so it won’t matter if the text of the tip is considerably longer in
another language.

 Localization in Flash CS4
 Once you have made design considerations in your game to

incorporate localized text, Flash provides a very convenient and
powerful way to implement other languages. It provides this
functionality through two components: the Strings panel in the
integrated development environment (IDE) and the Locale class
in ActionScript. To demonstrate how these two pieces are imple-
mented, we will localize the MixUp game we created in Chapter 14.
The fi les for this example are in the Appendix B folder, specifi cally
the MixUp.fl a fi le.

Appendix B LOCALIZATION B-3

 The Strings Panel
 Under the Window → Other Panels menu in Flash CS4, you’ll

fi nd the Strings panel. This tool allows you to assign any dynamic
text fi eld an ID name, which will associate localized text with it.
Figure B.1 shows how the panel looks in the IDE.

 Figure B.1 The Strings panel is used to assign IDs to dynamic text fi elds.

 To begin the process of setting up other languages, click the
Settings button in the Strings panel. It will bring up a panel shown
in Figure B.2.

 On the left-hand side of the panel are a number of common
languages that are built into Flash. You can select one and click
the Add button to add it to your document’s language list. Once
you have selected the languages you want to support (in our
example, just English, French, and German), select the Default
runtime language from the combo box at the bottom of the
panel. For our purposes, we’ll start out with English. Finally, Flash
needs to know how we want the localization data to be used in
our game. There are three options available:

 ● Replace strings automatically at runtime — This option
stores all of the localized text in separate XML fi les for
each language and automatically loads the correct one
based on the language detected by the Flash Player. It will

B-4 Appendix B LOCALIZATION

 also automatically replace any strings you have tagged for
localization.

 ● Replace strings manually using stage language — If you
select this option, Flash will export the game with one lan-
guage embedded in the fi le and not utilize external XML
fi les. If you want to support a number of different lan-
guages, you will have to switch the language and publish
to separate SWF fi les. For content that, for whatever rea-
son, will not have access to any external fi les, this is a good
option for keeping the fi le completely self-contained.

 ● Replace via ActionScript at runtime — The best option,
and the one we’ll be using in our example, this will turn
over language selection and replacement to us to control
through code.

 Once the languages are defi ned, the Strings panel will populate
with fi elds for each locale. You are now ready to begin assigning
strings to your text fi elds. In the case of our MixUp game, I have
already prepped the FLA by changing all of the text fi elds in it from
static to dynamic. This is because when static text is compiled
Flash simply reduces it to shapes. In order for it to stay text at run-
time, it must be defi ned as dynamic text. Once you have changed
a text fi eld to be dynamic, you want to make sure to embed the
font you’re using. In the Text Properties panel, select Character
Embedding. It will bring up the panel seen as Figure B.3.

 Figure B.2 The Strings Settings panel allows you to confi gure which languages you will
support in your game.

Appendix B LOCALIZATION B-5

 For the languages we’re using for MixUp, we need to embed the
Latin I and Latin Extended A sets. We’ll go ahead and also include
the Latin Extended B and Latin Extended Additional sets, since
German can occasionally contain a rogue character from these
sets as well. Now we’re ready to begin assigning text. To tag a text
fi eld, simply select it and give it a unique name in the ID fi eld, as
shown in Figure B.4.

 No matter what you enter as an ID for a text fi eld, Flash will
convert it to uppercase and prefi x it with “ IDS_ ” . This conforms
to the XML localization standard that Flash follows. In the String
fi eld, you can now enter whatever text you want to use for that
fi eld and it will be bound through its ID. It’s also worth noting
that two or more text fi elds can share the same ID; if you are using
the same string in two places, reuse IDs to save space in the XML
fi le and make translation easier.

 After you have repeated this process in English for all the text
fi elds in a game, you have two different options for fi lling in

 Figure B.3 The Character Embedding panel allows you to select which character sets you
want to include.

B-6 Appendix B LOCALIZATION

 the other languages. One is to merely type or paste text into the
proper column for each respective language and ID. This is rela-
tively easy to do if you are the person responsible for the transla-
tions. When you export the SWF, Flash will generate an XML fi le
for each language with all of the text. On the other hand, if you
are looking to someone else to perform the translations for you,
you have another option. Once all the English tags are created,
export the SWF. This will generate the XML fi les, with blanks left
in the other languages. The English fi le will look like this:

 < xliff version="1.0" xml:lang="en" >
 < fi le datatype=“plaintext" original="MixUp.fl a "
source-language="EN" >

 Figure B.4 Each localized text fi eld has an associated ID to uniquely identify it.

Appendix B LOCALIZATION B-7

 < header > < /header >
 < body >
 < trans-unit id="001" resname="IDS_CLOSEBUTTON" >
 < source > Close < /source >
 < /trans-unit >
 < trans-unit id="002" resname="IDS_FINALTIME " >
 < source > Final Time: < /source >
 < /trans-unit >
 < trans-unit id="003" resname="IDS_HOWTOPLAY " >
 < source > How To Play < /source >
 < /trans-unit >
 < /body >
 < /fi le >
 < /xliff >

 Note how each ID gets its own “ trans-unit ” XML node. The lines
in bold are the individual strings used for each ID. You can hand
these XML fi les off to your translator and have them fi ll in the other
languages from the English fi le. After these new fi les are complete,
you can import them from the Strings panel in Flash. Select the
Import XML button, and Flash will prompt you for the language
you want to import, fi lling out the entire column. Pretty snazzy,
huh? Once all the languages are set up properly, Flash also gives
you a handy way of previewing the other languages in context.
Simply change the Stage Language in the combo box on the Strings
panel. Any localized text fi elds you are currently viewing will update
to the selected language. This allows you to check for any overfl ow
or spacing issues. Be sure to switch the language back to English
(or the desired default language) when you’re done checking.

 At this point, we’ve covered how to create all of the localiza-
tions and generate the required XML for them. Now it’s time to
add some ActionScript that will make the translations active in
our SWF. Because we’ll need to wait for the language XML to load
before we display any text in the game, I’ve added a blank frame
to the beginning of the MixUp.fl a main timeline and given it a
label of “ init. ” Correspondingly, there are some additions to the
MixUp document class; the additions are in bold below:

 static public const FRAME_INIT:String = " init " ;

 public function MixUp() {
 enumerateFrameLabels();
 addEventListener(FRAME_INIT, loadLanguage, false, 0, true);
 addEventListener(FRAME_TITLE, setupTitle, false, 0, true);
 addEventListener(FRAME_GAME, setupGame, false, 0, true);
 addEventListener(FRAME_RESULTS, setupResults, false, 0, true);
 createImagePool();
 }

 protected function loadLanguage(e:Event):void {
 stop();
 var language:String = Capabilities.language;
 Locale.loadLanguageXML(language,languageLoaded);
 }

B-8 Appendix B LOCALIZATION

 protected function languageLoaded(success:Boolean):void {
 Locale.autoReplace=success;
 gotoAndStop(FRAME_TITLE);
 }

 When the “ init ” frame is hit at the beginning of the game, it
polls the Capabilities object for the active language of the player.
You could also easily force this to a specifi c language or tie it to a
series of buttons allowing the user to select the language manu-
ally. The Locale class is then used to load the language XML. Once
the load is complete, regardless of success, the callback function
of languageLoaded is called. If the language fi le is found, we want
the Locale class to automatically replace any tagged text on the
screen with text from the XML. If the fi le was not found for some
reason, we want to leave the text in its default state (in this case,
English).

 We are now done with the localization. If you were to change
the XML loaded to “ de ” or “ fr ” in the MixUp class fi le, you would
see all the text in the game refl ect those languages. However, one
side effect of changing all of our text fi elds to dynamic is that any-
thing underneath those fi elds won’t receive mouse events. This is
problematic because on multiple screens a text fi eld sits on top of
a button. By default, TextField objects have their mouseEnabled
property set to true. Because there is no way to change this
default behavior, we must manually set this property to false for
all TextField objects. Don’t panic, though; I have created a generic
method to do this for us with only a single line of code. Alongside
the other classes in the folder is a new class called TextFieldUtil.as.
In it, there is a static method called disableTextFields :

 public class TextFieldUtil {

 static public function disableTextFields(displayObject:
DisplayObjectContainer):void {
 for (var i:int = 0; i < displayObject.numChildren; i++) {
 if (displayObject.getChildAt(i) is TextField) {
 var tf:TextField = displayObject.getChildAt(i) as
TextField;
 if (tf.type = = TextFieldType.DYNAMIC) {
 tf.mouseEnabled = false;
 tf.tabEnabled = false;
 }
 }
 }
 }
 }

 This function iterates through the display list of a given con-
tainer, fi nds all dynamic TextField instances, and disables mouse
and tab input. This way, our classes that use localized text fi elds
can merely make a call to:

 TextFieldUtil .disableTextFields(this);

Appendix B LOCALIZATION B-9

 Now MixUp is fully set up to support English, French, and
German audiences. I should note that in real time it took me
about an hour to tag all the text fi elds and look up the transla-
tions for just those two languages. In development terms, that is
a minimal investment! There are a number of additional capabili-
ties of the Locale class, such as getting the string for a specifi c ID
or assigning an ID to a text fi eld at runtime. The former is par-
ticularly useful if you need to assign changing text to a fi eld dur-
ing gameplay, which we don’t do in MixUp. To further explore the
Locale class, consult the Flash CS4 documentation.

C-1
Real-World Flash Game Development
© 2010, Elsevier Inc. All rights reserved.2010

 JSFL IS JAVASCRIPT FOR
LOVERS

 As I mentioned all the way back in Chapter 2, Flash CS4 is not
really an ideal environment for game development in the tradi-
tional sense. The way it manages assets, for example, can be very
clunky. Adobe has greatly improved the way the library works in
CS4, but there are still some basic features that would be really nice
to have, such as batch renaming, autosorting assets into the correct
folders, etc. In many other applications, users would simply have
to wait until the next version in the hopes that features like these
might get added.

 Luckily , Adobe has created a way in which users can add their
own custom tools to their environment by making the entire
Flash interface accessible through an API. This API is known as
JavaScript Flash (JSFL) and, as expected, is JavaScript based.
It can be used in an almost unlimited number of ways to auto-
mate various aspects of the Flash IDE. Because is it so much like
ActionScript, it is also very approachable. However, unlike AS3,
it has no type enforcement or compile-time checking, so it can
also be trickier to debug. In general, though, most scripts writ-
ten in JSFL are pretty short. Because these scripts run once, lin-
early (from start to fi nish), it’s a good idea to not have too much
functionality in a single script. Adobe has also included the entire
JSFL reference in the Flash CS4 help fi les, under Extending Flash.
After you have fi nished reading this, I encourage you to read more
about what JSFL can do.

 Writing JSFL
 To create a JSFL fi le, simply select File → New → Flash

JavaScript fi le. Performing JSFL commands can be as simple

 APPENDIX C

C-2 Appendix C JSFL IS JAVASCRIPT FOR LOVERS

 as writing some code in a *.jsfl fi le and executing it through the
Commands → Run Command menu in Flash. For example, the
following script will change the size of the Stage to 640 � 480
from the default 550 � 400:

 fl .getDocumentDOM().width = 640;
 fl .getDocumentDOM().height = 480;

 This command format may seem odd at fi rst, but basically
these lines break down to the following logical steps:

 ● fl returns a reference to Flash itself.
 ● getDocumentDOM() returns a reference to the active doc-

ument object.
 ● Width and height are simply properties of the document

object, both integers.
 These two lines of code require no interaction from the user

to function. Some commands in the JSFL API are based around
some type of user input. Here is an example that puts all of the
selected items in the Library panel into a particular folder, even if
the folder does not exist:

 var selectedItems = fl .getDocumentDOM().library.
getSelectedItems();

 var folderExists = fl .getDocumentDOM().library.
itemExists(" Graphics ");
 if (!folderExists) fl .getDocumentDOM().library.
newFolder(" Graphics ");

 fl .getDocumentDOM().library.moveToFolder(" Graphics ");

 To test this example, simply import an item or two into an
empty document. Select both items in the library and then run
this script. Both items will be moved to a folder called “ Graphics, ”
which will be created if it does not exist. As you can see, this API
can quickly become very powerful for organizing assets and
automating other tasks inside of Flash.

 The History Panel
 If you are trying to automate a specifi c, repetitive series of

tasks, one of the best ways to create the JSFL for those commands
(rather than looking it all up in the reference) is to use the History
panel. This is a panel built into Flash that is accessible through
the Window → Other Panels menu. It keeps a record of all of your
actions inside of Flash. You can select one or all of these actions
and Flash will automatically convert it to JSFL code.

 As you can see from Figure C.1, the History panel’s record is
extremely detailed. Note, however, that the second to last action
in the panel has a small red “ x ” over it. This represents an action
for which JSFL code cannot be produced, for whatever rea-
son. Usually this has to do with custom actions like naming an

Appendix C JSFL IS JAVASCRIPT FOR LOVERS C-3

 instance on Stage. Even though it won’t generate the JSFL for
those actions, you still have the correct order of operations to
recreate the steps.

 Figure C.1 The History panel contains a log of all of your performed actions in a document.

 Custom Panels and MMExecute
 Ultimately , even executing scripts with the Run command is not

a particularly user-friendly workfl ow. Suppose you have a series of
commands you want to run on items as they are imported into
the library. This might include renaming them, moving them to
a folder, putting them in sequential order on the timeline, etc.
What’s more, you might want the way you rename them and the
folder where you want to move them to be custom every time. In
a scenario like this, it becomes increasingly ineffi cient to just run
single JSFL scripts over and over again, because you’d have to cre-
ate custom fi les for every situation. For an instance such as this,
we want to create a custom panel inside of Flash.

 Custom panels are nothing more than SWFs that execute JSFL
commands, so they are very simple to create. JSFL commands
can actually be called from inside ActionScript using a global
method called MMExecute. In fact, any SWFs running inside
of Flash, either as panels or in test mode, can call JSFL. This is
where the true power of JSFL is realized. To run a line of JSFL in
ActionScript, you simple pass the JSFL code as a string to the

C-4 Appendix C JSFL IS JAVASCRIPT FOR LOVERS

 MMExecute method. For example, the following code changes
the Stage height of a FLA the same way we saw earlier, just from
inside a SWF:

 MMExecute (" fl .getDocumentDOM().height = 480; ");

 Before we go any further, there are a couple of “ gotchas ” to
using MMExecute you should be aware of. The fi rst is that no car-
riage returns are allowed — remember that this is simply a string
in ActionScript. Because of this, it is of the utmost importance
that semicolons are used at the end of every line (which I’m sure
you were already doing anyway …). The second hitch is that any
place where you may have used double quotes in your JSFL the
quotes must be escaped with a backslash (\) character. Both of
these are frustrating incompatibilities because they prevent you
from simply creating a script and testing it in Run Command
mode, then copying and pasting it into ActionScript. You must
modify them fi rst into what is basically an unreadable state.

 Enter the JSFLConverter
 Luckily , I have put together a class and applet to help called

JSFLConverter. It loads a JSFL fi le and processes it to strip out line
breaks and escape double quotes. It even wraps the entire script
in an MMExecute(“ � � ”) ; command and sends it to the clipboard
so all you have to do after running it is paste the result in your
ActionScript. Because this class also uses regular expressions to
perform its task, let’s review it quickly. It is associated with the
JSFLConverter FLA, which has Button and TextArea components
on the Stage:

 package {

 import fl .controls.TextArea;
 import fl .controls.Button;
 import fl ash.display.Sprite;
 import fl ash.events.Event;
 import fl ash.events.MouseEvent;
 import fl ash.net.*;
 import fl ash.system.System;

 public class JSFLConverter extends Sprite {

 public var outputText:TextArea;
 public var selectFileButton:Button;

 private var _fi le:FileReference = new FileReference();

 public function JSFLConverter() {
 selectFileButton.addEventListener(MouseEvent.CLICK,
selectFile, false, 0, true);
 }

 private function selectFile(e:MouseEvent):void {
 _fi le.browse([new FileFilter(" JSFL Scripts " , " *.jsfl ")]);

Appendix C JSFL IS JAVASCRIPT FOR LOVERS C-5

 _fi le.addEventListener(Event.SELECT, fi leSelected, false,
0, true);
 }

 private function fi leSelected(e:Event):void {
 var urlRequest:URLRequest = new URLRequest(_fi le.name);
 var urlLoader:URLLoader = new URLLoader(urlRequest);
 urlLoader.addEventListener(Event.COMPLETE, fi leLoaded,
false, 0, true);
 }

 private function fi leLoaded(e:Event):void {
 var urlLoader:URLLoader = e.target as URLLoader;
 var jsfl :String = urlLoader.data;
 jsfl = jsfl .split(String.fromCharCode(13)).join(" ");
 var re:RegExp = new RegExp(" \ " " , " g ");
 jsfl = jsfl .replace(re, " \\\ " ");
 outputText.text = " MMExecute(\ " " + jsfl + " \ "); " ;
 System.setClipboard(outputText.text);
 }
 }
 }

 The class relies on the FileReference class to allow you to browse
to any particular JSFL fi le and load it. Once the fi le has been loaded
(note that it uses a URLLoader rather than the FileReference class’s
 load() method), it is processed in two ways. The fi rst is to use the
 split method to break the string into an array of lines (the carriage
return character in Flash is character code 13) and then the join
method to reconnect all of the lines without breaks. Next, we cre-
ate a regular expression that will search for any instances of dou-
ble quotes and then replace them with an escaped double quote
(\ ”). Once this has been processed, the output is displayed in the
TextArea on the Stage and copied to the clipboard. This allows you
to perform a quick, one-step conversion to prep your JSFL script
for use in a panel. You’re welcome.

 The Move Items Panel
 To demonstrate how to create a custom panel, we’ll use the

simple JSFL script we looked at earlier to move the selected items
to a particular folder, except that we’ll allow the panel to defi ne
the name of the folder. You can see the result of this example in
the Move Items.fl a fi le in the Appendix C examples folder.

 First , we’ll create a new copy of the moveItems.jsfl script and
name it moveItemsPanel.jsfl . Next, we’ll do a Find and Replace to
change all of the instances of the string “ Graphics ” to some iden-
tifi er — in this case, “ FOLDER-NAME-HERE. ” What results is the
following new JSFL code:

 var selectedItems = fl .getDocumentDOM().library.getSelectedItems();
 var folderExists = fl .getDocumentDOM().library.
itemExists(" FOLDER-NAME-HERE ");

C-6 Appendix C JSFL IS JAVASCRIPT FOR LOVERS

 if (!folderExists) fl .getDocumentDOM().library.
newFolder(" FOLDER-NAME-HERE ");
 fl .getDocumentDOM().library.moveToFolder(" FOLDER-NAME-HERE ");

 We ’ll set this code aside for the moment and
create the panel itself. If you open Move Items.fl a,
you will see a few components on the Stage: a text
input box, a label, and a button. This is shown in
Figure C.2.

 When a user puts a name inside this text box, it
will be used when the folder is created by the JSFL.
If it is left blank, the code will not run. Because the
functionality of this panel is so simple, we won’t
bother to create an entire class for it (though you
should for more complex panels). Instead, in the
frame we’ll add the following script:

 moveButton .addEventListener(MouseEvent.CLICK, moveItems,
false, 0, true);

 function moveItems(e:MouseEvent) {
 if (folderName.text == " ") return;
 }

 Now , when the Move button is clicked, the moveItems method
will be called. This is where we want to add our JSFL. Fire up the
trusty JSFLConverter applet and load the new moveItemsPanel.jsfl
fi le. It will be correctly converted and ready to paste into the code:

 MMExecute (" var selectedItems =
 fl .getDocumentDOM().library.getSelectedItems();var folderExists =
fl .getDocumentDOM().library.itemExists(\ " FOLDER-NAME-HERE\ ");if
(!folderExists) fl .getDocumentDOM().library.newFolder(\ " FOLDER-NAME-
HERE\ ");fl .getDocumentDOM().library.moveToFolder(\ " FOLDER-NAME-
HERE\ "); ");

 Now all that is left to do is to substitute the FOLDER-NAME-
HERE string with the name specifi ed in the text box. Simply pull
up the Find and Replace window of the Actions panel (Ctrl – F on
Windows, Cmd – F on Mac), and replace FOLDER-NAME-HERE
with “ � folderName.text � . ” Flash will fi nd three instances of this
and replace them. The resulting code will look like the following:

 moveButton .addEventListener(MouseEvent.CLICK, moveItems,
false, 0, true);

 function moveItems(e:MouseEvent) {
 if (folderName.text == "") return;
 MMExecute(" var selectedItems =
fl .getDocumentDOM().library.getSelectedItems();var folderExists =
fl .getDocumentDOM().library.itemExists(\ " " +
 folderName.text + " \ ");if (!folderExists)
fl .getDocumentDOM().library.newFolder(\ " " + folderName.text
 + " \ ");fl .getDocumentDOM().library.moveToFolder(\ " " +
folderName.text + " \ "); ");
 }

 Figure C.2 The layout of our Move Items panel.

Appendix C JSFL IS JAVASCRIPT FOR LOVERS C-7

 When this SWF is run inside of Flash, it will now execute the
JSFL commands. In order to have the panel actually show up
inside of the Flash menu system, you’ll need to copy the SWF to
a special folder called WindowSWF. This folder is in a different
place depending on your OS, so it’s easiest to just do a search for
it. There are usually two copies of it — one in a subfolder of your
Flash CS4 installation that is shared by all users and another in
a subfolder of your user folder. Once you’ve placed the SWF
fi le there, restart Flash and you’ll see it as an option under the
Window → Other Panels menu. Figure C.3 shows how the panel
looks when active inside of Flash.

 Figure C.3 The Move Items panel active inside of Flash.

 Conclusion
 Now that you know how to generate JSFL code and embed it

in a custom panel, go nuts! Any time you have a repetitive task
or want to streamline functionality in the Flash IDE, JSFL will
quickly become your best friend. Scripts and panels like these
can mean hours of saved time in productivity.

I-1

 3D in Flash
 basics , 161 – 164
 perspective projection ,

 163 – 164
 position , 161 – 162
 otation , 162 – 163
 x,y,z system , 161 – 164
 see also Tunnel shooter

 8-bit PNG with alpha channel , 79

 A
 Absolute-value function , 159
 Acceleration/deceleration ,

 176 – 177
 direction of acceleration , 184

 Accessor methods , 39 – 40
 Action games , 2
 ActionScript

 code editors , 15 – 17
 familiarity with , 35
 history of/versions , 13 – 14
 idiosyncrasies , 65 – 66
 see also Flash development,

OOP (object-oriented
programming)

 activate method , 136 , 169 – 170 ,
 228

 Activity Monitor (Mac) , 17 – 18
 activityLevel Camera object , A3 ,

 A4 – A5
 addEnemy method , 172 , 173
 addEventListener method ,

 50 – 53 , 72
 addFrameScript method , 66 – 69
 Adjacent side of right triangle ,

 154 – 155
 Adobe Flash

 see Flash development
 ADPCM (Adaptive Differential

Pulse Code Modulation) ,
 99f , 100

 Adventure games , 1 – 5
 AES (Advanced Encryption

Standard) , 314
 AI (artifi cial intelligence) , 8 – 9
 AIFF format , 97 – 98
 Algorithms , 6
 alive value and destruction

animation , 197
 Alpha-channel video , 115 – 116 ,

 125 – 127
 Amadeus Pro (HairerSoft) , 101
 Ambient sound , 98
 AMFPHP , 32
 Angels and trig functions ,

 154 – 155
 _angle variable , 179
 Animation

 easing , 86
 vs. games , 21 – 22
 projectile class , 87 – 88
 sequencing , 86
 simple scripted shooter ,

 87 – 90
 timeline vs. ActionScript ,

 85 – 86
 tweens , 86 – 87

 appendChild method , 148 – 149
 ApplicationDomain , 70
 Arrays

 basics , 60 – 61
 three dot syntax , 38
 Vector class , 176

 ASDoc formatting , 64 – 65
 Asset list , 28 – 30
 Assets

 _assetDomain property , 257
 building asset list , 28 – 30
 external SWFs , 244 – 248
 getAssetClass function , 261
 Linkage (Symbol Properties) ,

 277 – 279

 linking classes to , 45 – 46
 loadNextAsset method , 260
 managing , 75 – 76 , 259

 Attributes
 class , 8 , 40 – 41
 XML , 131 – 132

 Audio/sound
 export settings to use , 98 – 100
 formats , 97 – 98
 pausing/muting , 108 , 112
 planning , 28 – 30
 playing/stopping , 106 , 109
 Publish Settings window ,

100f
 quality adjustments , 100
 scripting sounds , 101 – 114
 setting up, for export , 112 – 113
 Sound class , 102
 sound effects , 97 – 98
 Sound Properties window , 99f
 SoundChannel object , 102
 SoundEngine class , 65 ,

 103 – 112 , 208
 SoundEngineEvent , 103 , 112
 soundEvent method , 109
 SoundMixer class , 113 – 114
 SoundTransform class , 102
 speech settings , 98 , 100
 testing sound , 112 – 113
 tools for working with

sounds , 101
 using external fi les , 101
 volume/pan , 107

 Author-time events , 12
 Axes

 perspective projection ,
 163 – 164

 rotation , 162 – 163
 x,y coordinate systems , 154
 x,y,z system and 3D ,

161 – 164

 INDEX

Note: Page numbers with “f” refer to fi gures.

I-2 INDEX

 B
 Background/foreground

objects , 10 , 88
 Backstories , 240 , 241
 Barriers and hitTestPoint

method , 190 – 194
 Base class , 46
 Begin Remote Debug Session

command , 298
 Bitmap Properties panel , 81f
 Bitmaps

 IBitmapDrawable
interface , 43

 smoothing , 82 – 83
 see also Graphics

 Blur, motion , 124 – 125
 Board-based games , 5
 Bots , 307 – 308 , 309
 Bounce easing , 94
 Bounding boxes

 hitTestObject method ,
 189 – 190 , 194 , 195 – 196

 rect testing , 195 – 200
 Break points , 296 – 298
 Breaking up data , 312
 Bubbling phase of events , 50 – 51
 Bugs , 293 – 298
 Buttons

 as display objects , 11
 event propagation/

cancellation , 53 – 54
 planning use of , 26f , 26 – 27 ,

 28 – 30
 ByteArray class , 63

 C
 CameraBitmapDataExample.

fl a , A6
 CameraExample.fl a , A4 – A5
 Cameras

 applications , A7
 basics , A4 – A7
 SourceImageCamera class ,

 236 – 238
 SourceImageWebCamera

class , 283 – 287 , 290
 cameraStatus method , A5 , A6
 Cancellation of event

propagation , 53 – 54
 Capture phase of events , 50 – 51

 Card-based games , 5
 Memory Card game , 90 – 95

 Cartesian coordinate system ,
 153 – 154

 Casting , 48 – 49
 catch statement block , 56 – 57
 Catching errors , 56 – 57
 Character Embedding panel , B5f
 checkCards method , 94
 checkCollisions method , 198 – 199
 checkEnemies method , 269
 checkInventory method , 270
 checkItems method , 269
 checkPlayerCollisions method ,

 268
 checkPortals method , 270
 checkWin method , 229
 Ciphering , 314
 Circular objects and collisions ,

 194 – 195
 Classes

 attributes , 8 , 40 – 41
 vs. base class , 46
 basics , 7 – 8 , 35 – 36
 code organization

recommendations , 210
 constants, variables, and

methods , 37 – 39
 constructors , 37
 dynamic attributes , 40 – 41
 exported symbols with no

class fi le , 48
 extending , 201 – 202
 as fi les , 36 – 37
 fi nal attributes , 40 – 41
 getDefi nitionByName

method , 48 – 49
 getter/setter methods , 39 – 40
 identifi ers , 40 – 41
 inheritance and

polymorphism , 8 , 41 – 42 ,
 202 – 203

 instances/instantiation , 35 – 36
 vs. interfaces , 42 – 45
 internal attributes , 8 , 40 – 41
 linking to assets , 45 – 46
 naming conventions , 36
 packages , 11 – 12 , 36
 private attributes , 8 , 40 – 41
 Project window , 46f
 protected attributes , 8 , 40 – 41

 public attributes , 8 , 40 – 41
 subclasses/superclasses , 41 ,

 202 – 203
 UML diagrams , 32 – 33
 versions , 8

See also specifi c class name
 Classical mechanics , 175
 cleanUp method , 72 , 225 , 228
 clear method , 255 , 256
 clearSelection method , 144 – 145
 client property , 285
 Code editors , 15 – 17
 Codecs, video , 115 – 116
 Coeffi cient of friction , 177
 Collision detection

 alive value , 197
 checkCollisions method ,

 198 – 199
 checkPlayerCollisions

method , 268
 CollisionGrid class , 249
 combining approaches to , 200
 createEnemy method , 198 – 199
 design basics , 189
 destroy method , 197 , 198 – 199
 Enemy class , 196 – 197
 enterFrame method , 194
 getCollisionReference method ,

 264 , 267
 hitTestObject method ,

 189 – 190 , 194 , 195 – 196
 hitTestPoint method , 190 – 194
 iterative testing , 199
 localToGlobal method , 191
 loops for , 194 , 199 , 200
 predictive testing , 195 – 196
 radius/distance testing ,

 194 – 195
 rect testing , 195 – 200
 SimpleShooterCollisions

class , 197 – 199
 tempPoint object , 194
 wall collision check , 268 – 269
 weaknesses of , 199 – 200

 Collision of hash results , 310
 CollisionGrid.as , 248
 Color

 ColorTransform class , 140 ,
 168

 getRandomColor method , 170
 Commenting code , 64 – 65

INDEX I-3

 Compacting, Save and Compact
operation , 75 – 76

 Compile-time errors , 56
 Compile-time events , 12
 Component Inspector , 299 – 300 ,

 301 , 302
 Compression

 audio , 99f , 100
 graphics , 81 – 82
 video codecs , 115 – 116

 concat method , 60 , 255
 Connection speed, system

requirements , 30 – 32
 ConnectionPanel class , 287 – 288
 ConnectionPanel.as , 283
 Connections

 ConnectionPanel class ,
 287 – 288

 onPeerConnect method , 285
 setupConnection method , 284
 see also Multiplayer

development
 Constants , 37 – 39 , 210 – 211
 Constructors , 37
 Containers , 210
 _content container , 148 – 149
 contentLoaderInfo object , 69 – 70
 Conventions

 see Naming conventions
 Convert to Compiled Clip

command , 302
 Coordinates/coordinate system ,

 153 – 154
 Cosine (cos) and trig functions ,

 153 – 157
 CPU speed , 30 – 32
 createBoard function , 227
 createEnemy method , 198 – 199
 createHighlight method , 170
 createImagePool method , 218
 createLevel method , 261
 createPortals method , 263
 createProjectile method , 89
 createPuzzle method , 142
 createTunnel method , 166
 Crossword puzzle

 appendChild method ,
 148 – 149

 clearSelection method ,
 144 – 145

 ColorTransform class , 140

 _content container , 148 – 149
 createPuzzle method , 142
 crossword builder , 148 – 149
 CrosswordClue class ,

138 – 139
 CrosswordPuzzle class ,

 139 – 148
 CrosswordTile class , 134 – 137
 CrosswordTile symbol , 137
 init method , 137
 keyDown method , 146
 for loops , 142 , 145
 MouseEvent , 146
 savePuzzle method , 148
 selectTile method , 144 – 145
 setAnswer method , 136 , 146
 structure in XML , 131 – 148
 switch statement , 146
 wordIndex , 145

 CrosswordPuzzle.fl a , 137 , 138 ,
 146 – 147

 Crugnola, Alessandro , 296
 currentIndex property , 229
 currentLabel property , 67
 currentTarget object , 11 , 49
 Customizing

 data structures , 64
 error classes , 54 – 55
 event classes , 54 – 55
 Media Encoder presets , 118f ,

 118 – 119
 Cutscenes

 CutsceneManager , 119 – 123
 encoding , 117 – 119
 external video uses , 116 – 119

 D
 Data protection , 309 – 314

 break up data , 312
 ciphering , 314
 collision , 310
 hash data/hashing ,

309 – 314
 insert red herrings , 312 – 313
 memory hacking , 309
 protecting sent/received data ,

 149 , 313
 Data signature , 309 – 310
 Data structures

 alternatives for lists , 63

 arrays , 60 – 61
 basics , 58
 ByteArrays , 63
 custom , 64
 dictionaries , 62 – 63
 iteration , 58
 objects , 59 – 60
 vectors , 62

 Database structure for
scores , 27 , 31

 deactivate method , 136 ,
 169 – 170 , 228

 Deblocking , 83
 Debug menu , 297 , 298
 Debug Movie command , 297
 Debugger , 296 – 298
 Debugging content

 basics , 18 – 19
 Begin Remote Debug Session

command , 298
 break points , 296 – 297
 debugger , 296 – 298
 ERROR traces , 295
 Flash debug player , 296 ,

297 , 298
 FlashTracer , 18 – 19 , 296
 INFO traces , 295
 throwErrors fl ag , 295
 TraceObject method , 295
 traces , 294 – 295
 WARNING traces , 295

 Deceleration/acceleration ,
 176 – 177

 direction of acceleration , 184
 Degrees and trig functions ,

 154 – 155
 Deleting

 delete command , 59 , 63
 dictionaries , 63
 objects , 59

 Delta time 180 – 181
 Description of game , 25 – 26
 Design patterns , 7 , 201

 poor programming practices ,
 212 – 213

 Singleton design pattern , 103 ,
 105

 Singleton document pattern ,
 206 – 208

 destroy method , 197 , 198 – 199 ,
 225 , 238 , 287

I-4 INDEX

 Dictionaries , 62 – 63
 disableTextFields method , B8
 Dispatching events

 dispatchEvent method , 49 – 50
 dispatchFrameEvent function ,

 68
 event fl ow , 66

 Displacement , 176
 Display objects , 11
 Distance formula , 160

 collision detection , 195
 Doyle, Jack , 87
 Drift, driving game with ,

 184 – 186
 Driving game

 _angle variable , 179
 classes , 178 – 184
 delta time 180 – 181
 direction of acceleration , 184
 with drift , 184 – 186
 Game class , 181 – 184
 getTimer method , 180
 moveVehicle function ,

 182 – 183
 readInput function , 182 – 183
 stoppingThreshold constant ,

 179
 Time class , 180 – 181 , 192
 Vehicle class , 179 – 180

 DrivingSimDrift.fl a , 184
 Dynamic attributes , 40 – 41
 Dynamic classes , 64

 E
 E4X (ECMAScript for XML) ,

 130 – 131
 easeIn function , 173
 Easing , 86
 Elastic easing , 94
 Encapsulation , 202 , 210
 Enemies

 addEnemy method , 172 , 173
 checkEnemies method , 269
 createEnemy method , 198 – 199
 Enemy class , 171 , 196 – 197 ,

 274 – 275
 Enemy.as , 165
 enemyFrequency variable ,

 171 – 172
 enemyMovementFinished

function , 173

 IEnemy interface , 249 , 250 , 274
 in platformer games , 243 – 244

 Engine
 data fl ow from application to ,

 240f
 game outline , 247
 MixUp game , 241
 platformer games , 240 – 241

 enterFrame event , 172 – 173
 enterFrame method , 194
 enumerateFrameLabels method ,

 68 , 218
 Enumerations , 49 – 50
 Environment.fl a , 279
 Errors

 basics , 55 – 56
 catching , 56 – 57
 compile-time , 56
 ERROR traces , 295
 runtime , 56
 throwErrors fl ag , 295
 throwing your own , 57 – 58
 try, catch, fi nally , 56 – 57
 type checking , 38
 see also Quality assurance

(QA)
 event type parameter , 51 – 52
 Events

 addEventListener , 50 – 53 , 72
 basics , 11 , 12 , 49 , 201
 custom , 54 – 55
 dispatching , 49 – 50 , 66
 enumerations , 49 – 50
 event/communication model ,

 205f
 fl ow of , 66
 phases , 50 – 53
 propagation and cancellation ,

 53 – 54
 removeEventListener , 50 – 53

 Exceptions , 55 – 56
 see also Errors

 Expectations vs. reality , 178
 Export

 setting up sound for ,
112 – 113

 settings for audio , 98 – 100
 video , 125 – 128

 Exported symbols with no class
fi le , 48

 Extended Tiny Encryption
Algorithm (XTEA) , 314

 Extending classes , 201 – 202
 External image tools , 83

 F
 farID property , 285
 Features, planning , 27 – 28
 Fieworks (Adobe) , 79 , 81f , 83
 File size

 audio formats , 97 – 98
 compression
 see Compression
 graphics , 77 – 78
 managing assets , 75 – 76
 PNG sequence vs. video ,

127f , 127 – 128
 video on timeline , 123 – 124

 FileReference save method ,
 148 – 149

 Files
 classes as , 36 – 37
 external, for sound , 101
 managing assets , 75 – 76
 organization of , 76
 reducing fi lesize , 75 – 76
 working with multiple ,

69 – 70
 Final attributes , 40 – 41
 fi nally statement block ,

56 – 57
 Firefox, Flash Tracer extension ,

 18 – 19 , 296
 Flash debug player , 296 – 298
 Flash development

 animation vs. games , 21
 application vs. games ,

21 – 22
 code editors , 15 – 17
 coordinate system , 154
 debugging content , 18 – 19
 display objects , 11
 events and listeners , 11 , 12
 Flash vs. Flex , 22
 fl aws , 15 – 20
 fl exibility of , 14
 for games , 14 – 15
 history of/versions , 13 – 14
 libraries , 19 , 20
 performance/memory

management , 17 – 18
 player penetration , 14
 RIAs , 21 – 22

INDEX I-5

 speed to market , 14 – 15
 Stage , 11
 vs. traditional game

development , 20 – 21 , 23
 visual appeal of games , 15
 websites vs. games , 22 – 23

 Flash idiosyncrasies
 basics , 65 – 66
 event fl ow , 66
 frame scripts , 66 – 69
 garbage collection , 71 – 73
 working with multiple SWF

fi les , 69 – 70
 Flash Media Server (FMS) , 281
 Flash Player

 penetration , 14
 system requirements , 30 – 32
 version 9 , 62 , 68 – 69 , 73 ,

 302 – 303
 Flash Professional 8 Game

Graphics (Firebaugh) , 77
 Flash Tracer , 18 – 19 , 296
 Flash Vars vs. XML , 149 – 151
 FlashDevelop , 16 – 17 , 45 – 46
 fl ashgamebook.com , 33
 Flex Builder , 16 – 17 , 22 , 302 – 303
 fl ipCard method , 93 – 94
 Flow

 event , 66
 game planning , 26 – 27

 Font selection , B1
 for each loops , 63
 for loops , 59 , 142 , 145
 for...in loops , 59 , 295
 Foreground/background

objects , 10 , 88
 Frame scripts

 addFrameScript , 66 – 69
 basics , 66 – 69
 frameScript function , 89
 frameScript method ,

172 – 173
 FrameRateProfi ler class ,

 299 – 301
 Framework, Flex , 14 – 15
 Friction , 177
 from method , 93 – 94

 G
 Game class

 DrivingSim , 181 – 184

 MixUp , 221 – 224
 SimpleTunnelShooter , 171

 Game development
 AI , 8 – 9
 algorithms , 6
 attributes , 8 , 40 – 41
 design patterns , 7 , 201
 main loops , 6 , 9
 OOP , 6 – 7 , 201 – 204
 poor programming practices ,

 209
 procedural languages/

programming , 6
 pseudo-code , 5 – 6
 scrolling , 10
 state machine , 9
 tile-based games , 10
 traditional vs. Flash ,

20 – 21 , 23
 views, game , 9 – 10
 see also Flash development

 Game planning, steps for
 asset list (step 4) , 28 – 30
 game description (step 1) ,

 25 – 26
 game mechanics (step 3) ,

 27 – 28
 game screen wireframe/fl ow

(step 2) , 26 – 27
 technical requirements (step

5) , 30 – 32
 UML class diagrams (step 6) ,

 32 – 33
 Game types

 action games , 2
 adventure games , 1 – 5
 board- and card-based

games , 5
 puzzle games , 3
 RPGs , 4
 strategy/simulation , 3 – 4
 vehicle games , 4 – 5
 word games , 3

 GameBoard class , 226 – 232
 gameHistory array , 235
 GameHistory class , 234 – 236
 gameOver method , 219 , 224 ,

 286 , 292
 Games.as , 164 , 310
 Garbage collection (GC) ,

71 – 73
 Genres , 1 – 5 , 239 – 240

 Geometry , 153 – 154
 getAssetClass function , 261
 getAverage method , A4
 getCamera method , A5
 getCollisionReference method ,

 264 , 267
 getDefi nitionByName method ,

 48 – 49
 getDistance function , 160
 getGetterInvocationCount

method , 304
 getGridReference method , 256
 getImages method , 225 , 234 ,

 238 , 287
 getInvocationCount method ,

 304
 getMemberNames method , 305
 getMicrophone method , A2
 getRandomColor method , 170
 getSetterInvocationCount

method , 304
 getSize method , 303
 GetSizeExample.fl a , 303
 getter function , 169
 Getter/setter methods , 39 – 40

 MixUp game , 223
 getTimer method , 180
 gModeler , 32
 Golden Gate Bridge source

image , 233
 Graphics

 compression , 81 – 82
 createImagePool method ,

218
 deblocking , 83
 external image tools , 83
 getImages method , 225 , 234 ,

 238 , 287
 image property , 231
 ISourceImage interface ,

 224 – 225 , 233 – 234
 key points to remember , 84
 raster formats , 78 – 83
 smoothing , 82 – 83
 SourceImageCamera class ,

 236 – 238
 SourceImageEmbedded class ,

 233 – 234
 SourceImageWebCamera

class , 283 – 287 , 290
 updateImages method , 237
 working with , 77 – 78

I-6 INDEX

 Gravity and physics forces , 177 ,
 266 , 267

 GridReference class , 254 – 255
 GridReference.as , 248
 Grids

 designing levels , 243f
 getGridReference method , 256
 updateGridReference method ,

 264

 H
 H.264 (MPEG-4-based) video ,

 115 – 118
 Hackers/hacking , 307

 bots , 307 – 308 , 309
 memory hacking , 309

 Hash data , 309 – 312
 Hashing , 309 – 310 , 313 – 314
 hide method , 91
 History panel , C2 – C3
 Hits

 see Collision detection
 HitTestCoordinate.as , 191 – 192
 hitTestObject method , 189 – 190 ,

 194 , 195 – 196
 hitTestPoint method , 190 – 194
 HitTestPoint.as , 191 – 192
 HitTestPoint.fl a , 191 – 192
 Hypotenuse (hyp) , 154 – 155

 I
 IBitmapDrawable interface , 43
 Icons vs. text , B2
 Identifi ers, class , 40 – 41
 IEnemy interface , 249 , 250 , 274
 IEnemy.as , 249
 IEventDispatcher interface , 44 ,

 49 – 50 , 226 , 249
 IGamePiece interface , 225
 IItem interface , 249 , 251 , 275
 IItem.as , 249
 Illusion vs. simulation , 177 – 178
 Illustrator (Adobe) , 77 , 83
 image property , 231
 Images

 see Graphics
 ImageSequence.fl a , 125
 Implementation of engine ,

 240 – 241

 import command , 11 – 12 , 36
 Index

 currentIndex property , 229
 _highlightIndex property , 165 ,

 169 – 170
 index property , 171
 wordIndex , 145

 Indexing arrays
 indexOf method , 61
 lastIndexOf method , 61

 Inertia , 177
 info object , 284
 INFO traces , 295
 Inheritance and polymorphism ,

 8 , 41 – 42
 classes vs. interfaces , 42 – 45
 OOP concepts , 202 – 203

 init method , 137 , 223 – 224 , 257
 Input

 key input for platformer
game , 265 , 266

 readInput function , 182 – 183
 readKeyInput method , 266
 setting minimum delay for ,

 308
 Instances/instantiation , 35 – 36
 interestDistance variable , 160
 Interfaces

 vs. classes , 42 – 45
 IBitmapDrawable , 43
 IEnemy , 249 , 250 , 274
 IEventDispatcher , 44 , 49 – 50 ,

 226 , 249
 IGamePiece , 225
 IItem , 249 , 251 , 275
 IPlayer , 249 – 250 , 273
 IPortal , 249 , 251 , 276
 ISourceImage , 224 – 225 ,

 233 – 234
 ISprite , 249
 IWall , 249 , 251 – 252 , 276
 for MixUp game , 224 – 226
 OOP concepts , 203 – 204
 sprites subpackage , 249

 Internal attributes , 8 , 40 – 41
 International development

 see Localization
 Inventory , 242 , 257 , 258

 checkInventory method , 270
 checkItems method , 269

 Inverse trig functions , 156

 ioError method , 109
 IPlayer interface , 249 – 250 , 273
 IPlayer.as , 249
 IPortal interface , 249 , 251 , 276
 IPortal.as , 249
 isMuted method , 112
 ISourceImage interface ,

224 – 225 , 233 – 234
 ISprite interface , 249
 ISprite.as , 249
 Items

 basics , 242
 checkItems method , 269
 IItem interface , 249 ,

251 , 275
 Item class , 275 – 276

 Iteration , 58
 IWall interface , 249 , 251 – 252 ,

 276
 IWall.as , 249

 J
 JavaScript Flash (JSFL)

 commands , C1 – C3
 custom panels and

MMExecute , C3 – C7
 History panel , C2 – C3
 JSFLConverter , C4 – C5
 Move Items panel , C5 – C7

 JPEG format
 basics , 78 – 83
 compression , 81 – 82

 JSFLConverter , C4 – C5

 K
 Key input for platformer game ,

 265 , 266
 Keyboard hacking , 307 – 309
 keyDown method , 146

 L
 Labels

 currentLabel property , 67
 enumerateFrameLabels

method , 68
 timeline , 67 , 67f

 Language selection , B3 – B9
 see also Localization

INDEX I-7

 languageLoaded function , B8
 lastIndexOf method , 61
 Length, array , 60
 Levels

 basics , 240 , 242
 createLevel method , 261
 grid design of , 243f
 loadLevel method , 259
 managing , 259
 nextLevel method , 272 – 273
 XML representation , 244 – 247

 Libraries
 custom/open source , 19 , 20
 linking classes to assets ,

 45 – 46
 organized by use , 76f
 tweening , 87
 video on timeline , 124

 Linkage properties , 113f
 Linking classes to assets , 45 – 46
 Listeners

 addEventListener method ,
 50 – 53 , 72

 basics , 11 , 12 , 49
 event phases , 50 – 53
 listener priority parameter ,

 51 – 52
 removeEventListener method ,

 50 – 53
 turning off, for security , 308
 useCapture parameter ,

51 – 52
 useWeakReference parameter ,

 52
 Lists , 63 , 58
 LoaderInfo object , 212
 Loading SWF fi les , 69 – 70
 loadLevel method , 259
 loadNextAsset method , 260
 loadResources method , 69 – 70
 Localization

 in Flash CS4 , B2 – B9
 font selection , B1
 icons vs. text , B2
 MixUp game , B2 – B9
 scrollbars for lengthy text , B2
 Strings panel , B3 – B9
 text fi eld length , B2

 localToGlobal method , 191
 Loops

 basics , 6 , 9

 for collision detection , 194 ,
 199 , 200

 for each loops , 63
 for...in loops , 59 , 295
 frame scripts , 66 – 69
 for loops , 59 , 142 , 145

 M
 Main loops , 6 , 9
 mainMenu method , 219
 Mark sweeping , 71 – 73
 Math

 3D in Flash , 161 – 164
 absolute-value function ,

159
 angels and trigonometric

functions , 154 – 155
 arc functions , 157
 coordinates/coordinate

system , 153 – 154
 degrees and trig functions ,

 154 – 155
 distance formula , 160 , 195
 geometry , 153 – 154
 getDistance function , 160
 hypotenuse (hyp) , 154 – 155
 interestDistance variable , 160
 inverse trig functions , 156
 mouse pointer math ,

156 – 161
 MouseFollowDistance.fl a ,

 159 – 160
 MousePointer.fl a , 156 – 158
 opposite/adjacent sides

of right triangle ,
154 – 155

 physics see Physics/
mechanics

 pi and radians , 158 – 161
 Pythagorean theorem ,

156
 right triangles and

trigonometric functions ,
 153 – 157

 SimpleTunnelShooter ,
164 – 175

 unsigned value of number ,
 159

 updatePointer function ,
 156 – 160

 Vector3D class , 175 – 176
 xSpeed variable , 159
 ySpeed variable , 159

 Math class , 153
 Mechanics

 see Physics/mechanics
 Media Encoder (Adobe)

 customizing presets , 118f ,
 118 – 119

 encoding cutscenes , 117 – 119 ,
 126 – 127

 Memory card game
 bounce easing , 94
 cardNumber function , 91
 checkCards method , 94
 elastic easing , 94
 fl ipCard method , 93 – 94
 Memory class , 92 – 95
 MemoryCard class , 91
 rotationX/Y properties , 94
 selectCard method , 93 – 94
 _selectedCards list , 94
 show/hide methods , 91
 shuffl edCards method , 93
 to/from methods , 93 – 94
 tweening animation , 90 – 95

 Memory management
 getSize method , 303
 memory hacking , 309
 monitoring , 17 – 18
 optimization , 298 – 306
 system requirements , 30 – 32

 Memory.as , 90 – 91
 MemoryCard class , 91
 MemoryCard.as , 90 – 91
 Memory.fl a , 90 – 91
 MemoryProfi ler class , 301 – 302
 method parameter , 51 – 52
 Methods

 constants, variables, and ,
 37 – 39

 getter/setter , 39 – 40
 identifi ers , 40 – 41
 naming conventions , 40

 MicrophoneExample.fl a , A1
 Microphones

 applications , A3
 basics , A1 – A4
 considerations , A3 – A4
 micUpdate method ,

A3 , A4

I-8 INDEX

 MixUp game
 activate/deactivate methods ,

 228
 checkWin method , 229
 cleanUp method , 225 , 228
 createBoard function , 227
 createImagePool method , 218
 currentIndex property , 229
 design basics , 215 – 216
 destroy method , 225 , 238
 engine , 241
 enumerateFrameLabels

method , 218
 fi le/class structure ,

216 – 217
 Game class , 221 – 224
 GameBoard class , 226 – 232
 gameHistory array , 235
 GameHistory class , 234 – 236
 gameOver method , 219 , 224
 getImages method , 225 , 234 ,

 238
 getter/setter methods , 223
 IEventDispatcher interface ,

 226
 IGamePiece interface , 225
 image property , 231
 init method , 223 – 224
 ISourceImage interface ,

 224 – 225 , 233 – 234
 localization of , B2 – B9
 main document , 217
 mainMenu method , 219
 MixUp class , 217 – 219
 mouse rollover/click states ,

 230 , 232
 movePiece method , 227 , 229
 multiplayer see Multiplayer

development
 pauseBeforeGameOver

method , 224
 pieceClicked method , 229
 pieceLockAnimation

method , 232
 _pieces list , 227
 playGame method , 219
 randomize method , 227 , 229
 Results class , 234 – 236
 RulesPanel class , 220 – 221
 setupGame method , 219 , 238
 shuffl eBoard method , 227

 SourceImageCamera class ,
 236 – 238

 SourceImageEmbedded class ,
 233 – 234

 startGame method , 223 – 224
 swapElements function , 229
 timerUpdate method , 222
 Title class , 220
 updateImages method , 237

 MixUp.as , 233 , 283
 MixUp.fl a , 217 , 287 , B7
 MMExecute method , C3 – C7
 MMORPGs (massively

multiplayer online RPGs) , 4
 see also Multiplayer

development
 Mouse pointer math , 156 – 161
 Mouse rollover/click states ,

230 , 232
 mouseEnabled property , B8
 MouseEvent , 146
 MouseFollowDistance.fl a ,

 159 – 160
 MousePointer.fl a , 156 – 157
 Move Items panel , C5 – C7
 Move Items.fl a , C5 , C6
 moveEnemies method , 173
 moveItems method , C6
 movePiece method , 227 , 229
 movePlayer function , 89 ,

 172 – 173
 moveProjectiles method , 89
 moveVehicle function ,

182 – 183
 MovieClip.as , 36
 MovieClips

 as display objects , 11
 safe casting , 49

 MP3 format , 97 – 98
 Multiplayer development

 classes , 283
 client property , 285
 ConnectionPanel class ,

 287 – 288
 destroy method , 287
 farID property , 285
 gameOver method , 286 , 292
 getImages method , 287
 hosting panel , 288f
 info object , 284
 join panel , 288f

 MixUp class , 290 – 292
 MixUp multiplayer , 282 – 292
 myID function , 286
 NetStatusEvent , 284 , 286
 onPeerConnect method , 285
 out object , 285
 peerIDs , 282 – 292
 play method , 285
 playGame method , 291 – 292
 RTMFP , 281
 sendGameOver method , 286
 setupConnection method , 284
 setupIncomingStream

method , 285 , 291
 setupResults method , 292
 showHostPanel method , 291
 SourceImageWebCamera

class , 283 – 287 , 290
 Stratus , 282
 Title class , 288 – 289
 updateImages method , 287

 Music
 audio formats , 98
 planning , 28 – 30

 Mute sound , 108 , 112
 myID function , 286

 N
 Names

 getDefi nitionByName
method , 48 – 49

 getMemberNames method ,
 305

 QName (Qualifi ed Name)
class , 305

 Naming conventions
 classes , 36
 interface , 203
 using underscore (“_”) , 40
 variables/methods , 40

 netStatus method , 122
 NetStatusEvent , 284 , 286
 NetStream objects , 282
 nextLevel method , 272 – 273

 O
 Objects , 59 – 60
 Observer design pattern ,

 204 – 205

INDEX I-9

 On2 VP6 codec , 115 – 116
 One-point projection , 163
 onPeerConnect method , 285
 OOP (object-oriented

programming)
 basics , 6 – 7 , 201 – 204
 encapsulation , 202 , 210
 event/communication model ,

 205f
 inheritance , 8 , 41 – 42 , 202 – 203
 interfaces , 203 – 204
 polymorphism , 8 , 41 – 42 , 203
 practical, in game

development , 204 – 205
 Singleton document pattern ,

 206 – 208
 storing values in variables/

constants , 210 – 211
 Opposite side of right triangle ,

 154 – 155
 Optimizing performance ,

 298 – 306
 out object , 285
 Outline, game , 26 – 27 , 247 – 248
 Overengineering , 212 – 213
 Overridden behaviors/

properties , 203
 override keyword , 41 – 42
 Overriding toString method ,

 294 , 304

 P
 Packages

 basics , 11 – 12 , 36
 import command , 11 – 12 , 36

 Pac-Man
 asset list , 28 – 30
 game description , 25 – 26

 Parallax scrolling , 10 , 88
 Patterns

 see Design patterns
 Pause sound , 108 , 112
 pauseBeforeGameOver method ,

 224
 Peer ID, Stratus , 282 – 292
 Performance

 monitoring , 17 – 18
 Sampler package , 302 – 306
 streaming silence for older

machines , 114

 system requirements , 30 – 32
 testing/optimization ,

298 – 306
 video on timeline , 124

 PerformanceProfi ler.fl a , 301
 Perspective projection , 163 – 164
 Phases, event , 50 – 53
 Photoshop (Adobe) , 83
 PHP , 31 , 149 , 150
 Physics/mechanics

 acceleration/deceleration ,
 176 – 177

 basics , 175
 displacement , 176
 friction , 177
 inertia , 177
 in platformer games , 240
 reality vs. expectations , 178
 scalars , 175
 simulation vs. illusion ,

 177 – 178
 top-down driving engine ,

 178 – 186
 vectors , 175
 velocity , 176

 Pi and radians , 158 – 161
 pieceClicked method , 229
 Planning

 see Game planning, steps for
 Platformer game

 asset classes , 248 , 273 – 279
 asset linkages , 277 – 279
 asset management 259 – 261
 asset SWFs , 244 – 248
 _assetDomain property , 257
 checkEnemies method , 269
 checkInventory method , 270
 checkItems method , 269
 checkPlayerCollisions

method , 268
 checkPortals method , 270
 clear method , 255 , 256
 CollisionGrid class , 249
 CollisionGrid.as , 248
 concat method , 255
 createPortals method , 263
 data fl ow , 240 – 241
 enemies , 243 – 244
 Enemy class , 274 – 275
 engine , 240 – 241
 engine classes , 248 – 271

 engine code , 247
 features of genre , 239 – 240
 game code , 248
 game fl ow and features ,

 241 – 244
 _gameRunning value , 258
 getAssetClass function , 261
 getCollisionReference method ,

 264 , 267
 getGridReference method , 256
 grid design of levels , 243f
 GridReference class ,

254 – 255
 GridReference.as , 248
 IEnemy interface , 249 ,

250 , 274
 IItem interface , 249 , 251 , 275
 init method , 257
 inventory , 242 , 257 , 258
 IPlayer interface , 249 – 250 , 273
 IPortal interface , 249 ,

251 , 276
 ISprite interface , 249
 Item class , 275 – 276
 items , 242
 IWall interface , 249 ,

251 – 252 , 276
 key input , 265 , 266
 level creation , 261
 level design and walls , 242
 level fi le format , 244 – 248
 level management , 259
 loadLevel method , 259
 loadNextAsset method , 260
 nextLevel method , 272 – 273
 outline , 247 – 248
 PlatformerConfi g class ,

 253 – 254
 PlatformerConfi g.as , 248
 PlatformerEngine class ,

 256 – 271
 PlatformerEngine.as , 248
 PlatformerEvent class , 252
 PlatformerEvent.as , 248
 PlatformerExample

class , 271 – 273
 player character , 242
 Player class , 273 – 274
 player position update ,

267 , 271
 playerJump method , 266

I-10 INDEX

 Platformer game (Continued)
 Portal class , 276
 PortalDestination.as , 248
 PortalDestinations class ,

 252 – 253
 PortalRequirement class ,

 252 – 253
 PortalRequirement.as , 248
 portals , 242
 readKeyInput method , 266
 setting , 241
 startGame method , 258 , 263
 stopGame method , 258 , 263
 toString method , 255
 unload method , 259
 update method , 265
 update task summary ,

 265 – 266
 updateGridReference

method , 264
 Wall class , 276
 wall collision check , 268 – 269

 PlatformerConfi g.as , 248
 PlatformerEngine.as , 248
 PlatformerEvent.as , 248
 PlatformerExample.fl a , 271
 play method

 for incoming streams , 285
 for sounds , 106

 playCutscene method , 122
 Player characters

 IPlayer interface ,
 249 – 250 , 273

 in platformer games , 240 , 242
 Player class , 273 – 274
 position update , 267 , 271

 Player.as , 165 , 191 – 192
 Player.fl a , 277
 playGame method , 219 ,

291 – 292
 playSound method , 109
 PNG (portable network

graphics) format
 8-bit with alpha channel , 79
 basics , 78 – 83
 compression , 81 – 82
 fi le size compared to video ,

 127 – 128 , 127f
 vs. video on timeline , 123 – 125

 pollMethods function , 305
 Polymorphism

 classes vs. interfaces , 42 – 45

 inheritance and , 8 , 41 – 42
 OOP concepts , 203

 pop command , 60
 PortalDestination.as , 248
 PortalRequirement.as , 248
 Portals

 basics , 242
 checkPortals method , 270
 createPortals method , 263
 IPortal interface , 249 , 251 , 276
 Portal class , 276
 PortalDestinations class ,

 252 – 253
 PortalRequirement class ,

 252 – 253
 Position, 3D , 161 – 162
 Predictive testing and collisions ,

 195 – 196
 Priority, listener , 51 – 52
 Private attributes , 8 , 40 – 41
 Procedural languages/

programming , 6
 Programming

 see Game development
 Projectile class , 87 – 88
 Projectile.as , 87
 Propagation of events , 53

 stopImmediatePropagation
method , 53 – 54

 stopPropagation method ,
 53 – 54

 Protect from Import commands ,
 314 – 315

 Protected attributes , 8 , 40 – 41
 Pseudo-code , 5 – 6
 Public attributes , 8 , 40 – 41
 Publish Settings window

 audio settings , 100f
 image settings , 81 – 82 , 82f

 push command , 60
 Puzzle games , 3
 Pythagorean theorem , 156

 Q
 QName (Qualifi ed Name) class ,

 305
 Quality assurance (QA)

 bugs , 293 – 298
 coding effort/improvement ,

 213
 debugger , 296 – 298

 FlashTracer , 18 – 19 , 296
 FrameRateProfi ler class ,

 299 – 301
 MemoryProfi ler class ,

 301 – 302
 performance/optimization ,

 298 – 306
 Sampler package , 302 – 306
 traces , 294 – 295
 TraceUtil class , 294 – 295

 QuickTime , 115 – 116 , 125 – 126
 Quit button , 27

 R
 Radians

 arc function measurement ,
 157

 pi and , 158 – 161
 Radius/distance testing and

collisions , 194 – 195
 Randomizing

 getRandomColor method , 170
 randomize method , 227 , 229

 Raster formats , 77 – 83
 R00004 algorithm , 314
 readInput function , 182 – 183
 readKeyInput method , 266
 Reality vs. expectations , 178
 Real-Time Media Flow Protocol

(RTMFP) , 281
 Real-Time Messaging Protocol

(RTMP) , 281
 Received/sent data, protecting ,

 149 , 313
 Rect testing , 195 – 200
 Reference counting , 71 – 73
 removeEventListener method ,

 50 – 53
 Requirements, technical , 30 – 32
 Resolution, screen , 30 – 32
 Resources

 loadResources , 69 – 70
 unloadResources , 69 – 70
 working with multiple SWF

fi les , 69 – 70
 Results class , 234 – 236 , 289 – 290
 Results.as , 283
 RIAs (rich Internet

applications) , 21 – 22
 Right triangles and

trigonometric functions

INDEX I-11

 basics , 154 – 155
 tunnelshooter example ,

 166 – 168
 Rollover/click states , 230 , 232
 Root node , 131 – 132
 Rotation, 3D , 162 – 163
 rotationX/Y properties , 94
 rotationX/Y/Z properties , 162 – 163
 RPGs (role-playing games) , 4
 RTMFP (Real-Time Media Flow

Protocol) , 281
 RTMP (Real-Time Messaging

Protocol) , 281
 RulesPanel class , 220 – 221
 Runtime errors , 56
 Runtime events , 12

 S
 Safe casting , 49
 Salt for hash , 311 , 313 – 314
 Sampler package , 302 – 306
 SamplerUtil class , 304
 Sampling data , A3
 Save and Compact operation ,

 75 – 76
 Saving fi les

 FileReference save method ,
 148 – 149

 Save and Compact operation ,
 75 – 76

 Scalars , 175
 Scores

 database structure for , 27 , 31
 hashing , 309 – 312
 technical requirements ,

27 , 31
 Scrolling

 basics , 10
 parallax , 10 , 88
 scrollbars for lengthy text , B2

 Security
 bots , 307 – 309
 data protection , 309 – 314
 detecting malicious use

and game shut down ,
 308 – 309

 hackers/hacking , 307
 malicious use , 307 – 309
 setting min delay for

input , 308
 SWF protection , 314 – 315

 turning off listeners , 308
 Security hash , 31
 selectCard method , 93 – 94
 _selectedCards list , 94
 selectTile method , 144 – 145
 sendGameOver method , 286
 Sent/received data, protecting ,

 149 , 313
 Sequencing , 86
 Servers , 30 – 32
 setAnswer method , 136 , 146
 setLoopBack parameter , A2
 setMode method , A5
 Setter/getter methods , 39 – 40

 MixUp game , 223
 Settings, game , 241
 setupConnection method , 284
 setupGame method , 219 , 238
 setupIncomingStream method ,

 285 , 291
 setupResults method , 292
 Shape objects , 232
 shift command , 60
 Shooter animation

 see Simple shooter
 show method , 91
 showHostPanel method , 291
 shuffl eBoard method , 227
 shuffl edCards method , 93
 Shut down on malicious use ,

 308 – 309
 Signature, data , 309 – 310
 Simple shooter

 background/foreground
objects , 88

 createEnemy method , 198 – 199
 createProjectile method , 89
 Enemy class , 196 – 197
 frameScript function , 89
 movePlayer function , 89 ,

 172 – 173
 moveProjectiles method , 89
 Projectile class , 87 – 88
 simple scripted shooter , 87 – 90
 SimpleShooter class , 88 – 90
 SimpleShooterCollisions

class , 197 – 199
 weaknesses of collision

detection , 199 – 200
 SimpleShooter.as , 87
 SimpleShooterCollisions.fl a , 196
 SimpleShooter.fl a , 87 – 90

 SimpleTunnelShooter
 see Tunnel shooter

 SimpleTunnelShooter.fl a ,
164 , 173 – 174

 Simulation games , 3 – 4
 Simulation vs. illusion ,

177 – 178
 Sine (sin) and trig functions ,

 153 – 157
 Singleton design pattern ,

103 , 105
 Singleton document pattern ,

 206 – 208
 SingletonExample.as , 206
 SingletonExampleDocument.

as , 207
 Size

 of fi les , 75 – 76
 of stage , 212

 Smoothing , 82 – 83
 Sorenson Spark codec , 115 – 116
 sort command , 60
 Sorting arrays , 60
 sortOn command , 60
 Sound

 see Audio/Sound
 Sound Studio (Freeverse) , 101
 SoundBooth (Adobe) , 101
 SoundEngine class , 65 , 103 – 112 ,

 208
 SoundEngine.as , 103 , 105
 SoundEngineEvent.as , 103
 SoundForge (Sony) , 101
 soundTransform value , A2
 SourceImageCamera class ,

 236 – 238
 SourceImageEmbedded class ,

 233 – 234
 SourceImageWebCamera class ,

 283 – 287 , 290
 SourceImageWebCamera.as ,

 283
 Specifi cations

 core mechanics of game ,
 27 – 28

 planning technical
requirements , 30 – 32

 Speech settings , 98 , 100
 Speed and velocity

formula , 176
 Speed to market , 14 – 15
 splice command , 60

I-12 INDEX

 Sprites
 as display objects , 11
 ISprite interface , 249
 safe casting , 49

 Stage (Flash) , 11
 size changes , 212

 startGame method , 172 – 173 ,
 223 – 224 , 258 , 263

 StarUML , 33
 State machine , 9
 Static methods/variables , 8 , 41
 stop method for sounds , 106
 stopCutscene method , 122
 stopGame method , 258 , 263
 stopImmediatePropagation

method , 53 – 54
 stoppingThreshold constant , 179
 stopPropagation method , 53 – 54
 stopSound method , 109
 Strategy games , 3 – 4
 Stratus , 282

 MixUp multiplayer , 282 – 292
 Streams

 audio stream setting , 100f ,
 100

 NetStream objects , 282
 play method for incoming ,

 285
 setupIncomingStream

method , 285 , 291
 streaming silence , 114

 Strings panel , B3 – B9
 Stub code , 33
 Subclasses , 41 , 202 – 203
 super keyword , 42
 Superclasses , 41 , 202 – 203
 swapElements function , 229
 SWF Encrypt (Amayeta

Software) , 314 – 315
 SWF fi les

 data protection , 314 – 315
 working with multiple ,

69 – 70
 switch statement , 146
 Symbol Properties

 Base class assignment , 47f
 CrosswordClue class , 139f
 CrosswordTile symbol , 137f

 Symbols, exported with no class
fi le , 48

 System requirements , 30 – 32

 T
 Tangent (tan) and trig functions ,

 153 – 157
 Target phase of events , 50 – 51
 Targets , 11
 Task Manager (Windows) ,

17 – 18
 Technical requirements , 30 – 32
 Technie Notes

 8-bit PNG with alpha channel ,
 79

 AMFPHP , 32
 format for animation

sequences , 125
 getRandomColor method , 170
 getters/setters , 135
 getTimer method , 180
 QName (Qualifi ed Name)

class , 305
 shape objects , 232
 sound quality , 100
 static attributes , 8
 streaming silence , 114
 Vector class , 176

 tempPoint object , 194
 Text fi eld length , B2
 TextFieldUtil.as , B8
 throwErrors fl ag , 295
 Throwing errors , 57 – 58
 Tile-based games , 10
 Tiles, tunnelshoter example , 164
 Time class , 180 – 181 , 192
 Timelines

 vs. ActionScript , 85 – 86
 animation vs. games , 21
 labels , 67 , 67f
 setting up internal video ,

 125 – 128
 sound via , 101 , 103
 video on , 123 – 125

 Timers
 getTimer method , 180
 timerUpdate method , 222
 tunnelshooter , 172 – 173

 timerUpdate method , 222
 Title class , 220 , 288 – 289
 Title.as , 283
 to method , 93 – 94
 toString method , 255 , 304 – 305

 overriding , 294 , 304
 Trace method , 295

 trace statement , 18 – 19 , 294
 TraceObject method , 295
 Traces , 294 – 295
 TraceUtil class , 294 – 295
 TraceUtil.fl a , 296
 Triangles and trigonometric

functions
 basics , 154 – 155
 tunnelshooter example ,

 166 – 168
 Trigonometric functions ,

 153 – 157
 tunnelshooter example ,

 166 – 168
 Trigonometry , 154
 try statement block , 56 – 57
 Tunnel class , 165 – 175
 Tunnel shooter

(SimpleTunnelShooter)
 activate/deactivate methods ,

 169 – 170
 addEnemy method , 172 , 173
 basic mechanics , 164
 classes, overview , 164 – 165
 ColorTransform class , 168
 createHighlight method , 170
 createTunnel method , 166
 easIn function , 173
 Enemy class , 171
 Enemy.as , 165
 enemyFrequency variable ,

 171 – 172
 enemyMovementFinished

function , 173
 enterFrame event , 172 – 173
 frameScript method , 172 – 173
 Game class , 164 , 171
 Games.as , 164 , 310
 getter function , 169
 _highlightIndex property , 165 ,

 169 – 170
 index property , 171
 moveEnemies method , 173
 movePlayer function , 172 – 173
 Player.as , 165 , 191 – 192
 startGame method , 172 – 173
 tiles , 164
 timer , 172 – 173
 Tunnel class , 165 – 175
 Tunnel.as , 165
 tunnelshooter package , 164

INDEX I-13

 TunnelTile.as , 165
 _tunnelTiles array , 165 , 167

 Tunnel.as , 165
 TunnelTile.as , 165
 _tunnelTiles array , 165 , 167
 TweenLite , 173
 TweenMax (Doyle) , 87 , 90 , 92 – 95
 Tweens , 86 – 87 , 173
 Type checking , 38
 Types

 for constants/variables , 37 – 39
 event type parameter , 51 – 52
 events and listeners , 11

 U
 UML (Unifi ed Modeling

Language) class diagrams ,
 32 – 33

 Underscore (“_”) naming
convention , 40

 unload method , 69 – 70 , 259
 unloadAndStop method , 69 – 70
 unloadResources method , 69 – 70
 unshift command , 60
 Unsigned value of number , 159
 update method , 265
 updateCamera method , A6 ,

 A6 – A7
 updateGridReference method ,

 264
 updateImages method , 237 , 287
 updatePointer function ,

 156 – 160
 URLLoader class , 129 , 149 ,

 150 – 151
 useCapture parameter , 51 – 52
 useWeakReference parameter , 52

 V
 Vanishing points , 163 – 164
 Variables

 constants, methods, and , 37 – 39
 getter/setter methods , 39 – 40
 identifi ers , 40 – 41
 naming conventions , 40
 storing values in , 210 – 211

 VBR (variable bit rate) , 118 – 119 ,
 123 – 124

 Vector class , 176
 Vector graphic formats , 77 – 78
 Vector3D and IPlayer interface ,

 249 – 250
 Vector3D class , 175 – 176
 Vectors

 basics , 175
 data structures , 62
 length/magnitude , 185

 Vehicle class , 179 – 180
 Vehicle games , 4 – 5
 Velocity , 176
 Versions, class , 8
 Video

 alpha-channel , 115 – 116 ,
 125 – 127

 codecs , 115 – 116
 CutsceneManager , 119 – 123
 encoding cutscenes ,

117 – 119
 external, via cutscenes/

menus , 116 – 119
 internal, setting up , 125 – 128
 playCutscene method , 122
 on timeline , 123 – 125
 using CutsceneManager ,

 122 – 123
 Views, game , 9 – 10
 Visual appeal of games , 15
 void keyword , 39
 Voidce-over audio , 98 , 100
 Volume/pan control , 107

 W
 w values and Vector3D class ,

 175 – 176
 Walls

 basics , 242
 collision check , 268 – 269
 IWall interface , 249 ,

251 – 252 , 276
 Wall class , 276

 WARNING traces , 295
 WAV format , 97 – 98
 Weak reference

 garbage collection , 72

 useWeakReference
parameter , 52

 weakKeys parameter , 62
 Webcams

 see Cameras
 Websites vs. games , 22 – 23
 Windows Media Player , 115 – 116
 Wireframe, game , 26 – 27
 Word games , 3
 wordIndex , 145

 X
 XML

 activate/deactivate
methods , 136

 attributes , 131 – 132
 basics , 130
 bringing data in , 129
 crossword builder and

content , 148 – 149
 crossword puzzle structure ,

 131 – 148
 CrosswordClue class , 138 – 139
 CrosswordPuzzle class ,

 139 – 148
 CrosswordTile class , 134 – 137
 E4X , 130 – 131
 features , 129
 vs. Flash Vars , 149 – 151
 levels represented as ,

 244 – 248
 root node , 131 – 132
 saving , 148 – 149
 sending data back out , 149
 URLLoader class , 129 , 149 ,

 150 – 151
 xSpeed variable , 159
 x,y coordinate system ,

153 – 154

 Y
 ySpeed variable , 159

 Z
 z-axis and 3D in Flash , 161f ,

 161 – 164

	REAL-WORLD FLASH GAME DEVELOPMENT
	COPYRIGHT PAGE
	CONTENTS
	ACKNOWLEDGMENTS
	INTRODUCTION
	Chapter 1 Computer Science Isn't for Everyone
	A Little Groundwork
	Common Game Types
	General Development Terms
	Game-Specific Development Terms
	Flash Development Terms
	You Can Wake Back Up Now

	Chapter 2 The Best Tool for the Job
	Flash Back
	The Case For Flash
	Nobody's Perfect
	Stop Fighting It
	Things Flash Was Built to Do
	The Best Tool for the Job

	Chapter 3 A Plan is Worth a Thousand Aspirin
	Step 1. Be Able to Describe the Game from a Bird's-Eye View in One or Two Sentences
	Step 2. Outline or Wireframe Out the Flow of All of the Game's Screens
	Step 3. With Your Description and Basic Wireframe in Hand, It's Time to Outline the Core Mechanics That Your Game Will Utilize
	Step 4. Build an Asset List
	Step 5. Make a List of Technical Requirements for Your Game
	Step 6 (Optional). Diagram Your Classes Using a UML Modeler
	A Quick Review of the Planning Steps

	Chapter 4 //FTW!
	Fair Warning
	PART 1: Classes
	Packages
	Classes as Files
	Constructors
	Constants, Variables, and Methods
	Getter/Setter Methods
	Class Identifiers
	Inheritance and Polymorphism
	Interfaces
	Linking Classes to Assets in Flash
	Class vs. Base Class
	Using Exported Symbols with No Class File
	getDefinitionByName and Casting

	PART 2: Events
	dispatchEvent
	addEventListener, removeEventListener, and Event Phases
	Event Propagation and Cancellation
	Custom Events

	PART 3: Errors
	try, catch, finally
	Throwing Your Own Errors

	PART 4: Data Structures and Lists
	Objects
	Arrays
	Vectors
	Dictionaries
	ByteArrays
	So What Should I Use For My Lists?
	Custom Data Structures

	PART 5: Keep Your Comments to Everyone Else!
	The Bottom Line

	PART 6: Why Does Flash Do That?
	Event Flow
	Frame Scripts
	Working with Multiple SWF Files
	Garbage Collection
	Conclusion

	Chapter 5 Managing Your Assets/Working With Graphics
	A Few Words About Organization
	Working with Graphics
	Raster Formats to Use
	Key Points to Remember

	Chapter 6 Make It Move: ActionScript Animation
	A Little Terminology
	To Tween or Not to Tween? Is That a Question?
	A Simple Scripted Shooter
	Memory: Tweening Animation
	Summary

	Chapter 7 Turn It Up to 11: Working With Audio
	Formats to Use
	Export Settings to Use
	Using External Files
	Tools for Working with Sounds
	Scripting Sounds

	Chapter 8 Put the Video Back in "Video Game"
	Video Codecs
	External Video Uses: Cutscenes and Menus
	The CutsceneManager
	Video on the Timeline
	Setting Up an Internal Video
	Summary

	Chapter 9 XML and Dynamic Content
	Bringing Data In: Understanding the URLLoader Class
	XML
	E4X
	The Crossword Puzzle
	Content Is a Two-Way Street: A Crossword Builder
	Sending Data Back Out
	One More Example: XML vs. Flash Vars
	Summary

	Chapter 10 Four Letter Words: M-A-T-H
	The Math Class
	PART 1: Geometry and Trigonometry
	A Quick Explanation of Radians and Pi
	3D in Flash
	The SimpleTunnelShooter Example

	PART 2: Physics
	Scalar
	Vector
	The Vector3D Class
	Displacement
	Velocity
	Acceleration
	Friction
	Inertia
	Simulation vs. Illusion
	Reality vs. Expectations
	Example: A Top-Down Driving Engine
	Example: Top-Down Driving Game with Drift
	Review

	Chapter 11 Don't Hit Me!
	What You Can Do vs. What You Need
	hitTestObject—The Most Basic Detection
	hitTestPoint—One Step Up
	Radius/Distance Testing—Great for Circles
	Rect Testing
	When All Else Fails, Mix 'n' Match

	Chapter 12 I Always Wanted to Be An Architect
	OOP Concepts
	Practical OOP in Game Development
	The Singleton: A Good Document Pattern
	Summary

	Chapter 13 We've All Been There
	Basic Encapsulation—Classes and Containers
	Store Relevant Values in Variables and Constants
	Don't Rely on Your Stage
	Don't Use Frameworks or Patterns That You Don't Understand or That Don't Apply
	Know When It's Okay to Phone It in and When It Definitely Isn't
	Conclusion

	Chapter 14 MixUp—A Simple Engine
	The Main Document
	The MixUp Class
	The Title Class
	The RulesPanel Class
	The Game Class
	The Interfaces
	The GameBoard Class
	The SourceImageEmbedded Class
	The GameHistory and Results Classes
	The SourceImageCamera Class
	Review

	Chapter 15 Bringing It All Together: A Platformer
	The Platformer Genre
	Data Flow
	The Game Flow and Features
	The Level File Format and Asset Structure
	The Engine Classes
	The Game Class
	The Asset Classes
	Taking It Further

	Chapter 16 Don't Play By Yourself: Multiplayer Development
	RTMFP
	Stratus
	MixUp Multiplayer
	Conclusion

	Chapter 17 Squash 'Em If You've Got 'Em: The Bug Hunt
	Bugs
	Performance/Optimization
	Summary

	Chapter 18 On Your Guard
	Malicious Use
	Data Protection
	SWF Protection
	Summary

	AFTERWORD
	APPENDIX A: Webcams and Microphones
	APPENDIX B: Localization

	APPENDIX C: JSFL is Javascript for Lovers

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

